化工学报 ›› 2021, Vol. 72 ›› Issue (2): 1191-1201.doi: 10.11949/0438-1157.20200864

• 材料化学工程与纳米技术 • 上一篇    

超疏水、自清洁氟化石墨改性不锈钢网的油水分离研究

雷然(),王嘉柔,赵颂(),王志   

  1. 化学工程联合国家重点实验室,天津大学化工学院化学工程研究所,天津市膜科学与海水淡化技术重点实验室,天津 300072
  • 收稿日期:2020-07-01 修回日期:2020-10-19 出版日期:2021-02-05 发布日期:2021-02-05
  • 通讯作者: 赵颂 E-mail:1411327608@qq.com;songzhao@tju.edu.cn
  • 作者简介:雷然(1997—),女,硕士研究生,1411327608@qq.com
  • 基金资助:
    天津市自然科学基金项目(19JCYBJC20900)

Study on oil-water separation of superhydrophobic and self-cleaning fluorinated graphite modified stainless steel mesh

LEI Ran(),WANG Jiarou,ZHAO Song(),WANG Zhi   

  1. State Key Laboratory of Chemical Engineering, Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, China
  • Received:2020-07-01 Revised:2020-10-19 Published:2021-02-05 Online:2021-02-05
  • Contact: ZHAO Song E-mail:1411327608@qq.com;songzhao@tju.edu.cn

摘要:

采用环氧树脂和氟化石墨(FG)纳米片对200目(75 μm)、300目(50 μm)和400目(37.5 μm)不锈钢网进行表面修饰改性,制备出具有超疏水、自清洁性能的氟化石墨改性钢网。正己烷-水、二氯甲烷-水、正癸烷-水、间二甲苯-水及柴油-水混合物可在自身重力下迅速通过氟化石墨改性钢网实现分离,且分离效率均在99.89%以上。同时,氟化石墨改性不锈钢网还具有良好的重复使用性能和机械耐久性能,在循环使用100次以及外力作用下磨损100次后,仍保持良好的超疏水性能。

关键词: 膜, 表面, 氟化石墨, 超疏水, 油水分离, 稳定性

Abstract:

Epoxy resin and fluorinated graphite (FG) nanosheets were used to modify the surface of 200 mesh(75 mm), 300 mesh(50 mm) and 400 mesh(37.5 mm) stainless steel meshes to prepare fluorinated graphite modified steel meshes with superhydrophobic and self-cleaning properties. The mixture of hexane/water, dichloromethane/water, decane/water, toluene/water and diesel/water can be quickly separated by the FG modified steel mesh under its own gravity, and the separation efficiency is above 99.89%. At the same time, the fluorinated graphite modified stainless steel mesh also has good reusability and mechanical durability. After 100 cycles of recycling and 100 times of wear under the action of external force, it still maintains good superhydrophobic properties.

Key words: film, surface, fluorinated graphite, superhydrophobic, oil-water separation, stability

中图分类号: 

  • TQ 028.8
1 Song H M, Chen C, Shui X X, et al. Asymmetric Janus membranes based on in situ mussel-inspired chemistry for efficient oil/water separation[J]. Journal of Membrane Science, 2019, 573: 126-134.
2 Li Y, Zhang G, Gao A, et al. Robust graphene/poly(vinyl alcohol) Janus aerogels with a hierarchical architecture for highly efficient switchable separation of oil/water emulsions[J]. ACS Applied Materials and Interfaces, 2019, 11(40): 36638-36648.
3 Jiang B, Chen Z X, Dou H Z, et al. Superhydrophilic and underwater superoleophobic Ti foam with fluorinated hierarchical flower-like TiO2 nanostructures for effective oil-in-water emulsion separation[J]. Applied Surface Science, 2018, 456: 114-123.
4 Ismail N H, Salleh W N W, Ismail A F, et al. Hydrophilic polymer-based membrane for oily wastewater treatment: a review[J]. Separation And Purification Technology, 2020, 233: 116007.
5 Wang J R, Wang X F, Zhao S, et al. Robust superhydrophobic mesh coated by PANI/TiO2 nanoclusters for oil/water separation ·with high flux, self-cleaning, photodegradation and anti-corrosion[J]. Separation and Purification Technology,2020, 235: 1383-5866.
6 Tezcan U U, Koparal A S, Bakir O U. Electrocoagulation of vegetable oil refinery wastewater using aluminum electrodes[J]. Journal of Environmental Management, 2009, 90(1): 428-433.
7 Al Hawli B, Benamor A, Hawari A. A hybrid electro-coagulation/ forward osmosis system for treatment of produced water[J]. Chemical Engineering and Processing - Process Intensification, 2019, 143: 107621.
8 Rastegar S O, Mousavi S M, Shojaosadati S A, et al. Optimization of petroleum refinery effluent treatment in a UASB reactor using response surface methodology[J]. Journal of Hazardous Materials, 2011, 197: 26-32.
9 Wu L, Ge G, Wan J. Biodegradation of oil wastewater by free and immobilized Yarrowia lipolytica W29[J]. Journal of Environmental Sciences, 2009, 21(2): 237-242.
10 Adebajo M O, Frost R L, Kloprogge J T, et al. Porous materials for oil spill cleanup: a review of synthesis and absorbing properties[J]. Journal of Porous Materials, 2003, 10(3): 159-170.
11 Sabouri M R, Javanbakht V, Ghotbabadi D J, et al. Oily wastewater treatment by a magnetic superoleophilic nanocomposite foam[J]. Process Safety and Environmental Protection, 2019, 126: 182-192.
12 Ge D T, Yang L L, Wang C B, et al. A multi-functional oil-water separator from a selectively pre-wetted superamphiphobic paper[J]. Chemical Communications, 2015, 51(28): 6149-6152.
13 Li H, Zhou C P, Li C S, et al. Superhydrophilic fluorinated polyarylate membranes viain situ photocopolymerization and microphase separation for efficient separation of oil-in-water emulsion[J]. RSC Advances, 2019, 9(2): 958-962.
14 任六一, 赵颂, 王志, 等. 抗污染芳香聚酰胺反渗透膜研究进展[J]. 化工学报, 2020, 71(2): 475-486.
Ren L Y, Zhao S, Wang Z,et al. Research progress of antifouling aromatic polyamide reverse osmosis membrane[J]. CIESC Journal, 2020, 71(2): 475-486.
15 Xu X, Long Y W, Li Q, et al. Modified cellulose membrane with good durability for effective oil-in-water emulsion treatment[J]. Journal of Cleaner Production, 2019, 211: 1463-1470.
16 Kang H, Liu Y, Lai H, et al. Under-oil switchable superhydrophobicity to superhydrophilicity transition on TiO2 nanotube arrays[J]. ACS Nano, 2018, 12(2): 1074-1082.
17 Sun Y H, Liu M M, Guo Z G. Ag nanoparticles loading of polypyrrole-coated superwetting mesh for on-demand separation of oil-water mixtures and catalytic reduction of aromatic dyes[J]. Journal of Colloid and Interface Science, 2018, 527: 187-194.
18 Zheng X, Liu X, Zha L. Under‐oil superhydrophilic poly(vinyl alcohol)/ silica hybrid nanofibrous aerogel for gravity‐driven separation of surfactant‐stabilized water-in-oil emulsions[J]. Macromolecular Materials and Engineering, 2019, 304(7): 1900125.
19 Cai D L, Ma P C. Hydrogel-coated basalt fibre with superhydrophilic and underwater superoleophobic performance for oil-water separation[J]. Composites Communications, 2019, 14: 1-6.
20 Gu H H, Li G Q, Li P P, et al. Superhydrophobic and breathable SiO2 polyurethane porous membrane for durable water repellent application and oil-water separation[J]. Applied Surface Science, 2020, 512: 144837.
21 Sun M H, Luo C X, Xu L P, et al. Artificial lotus leaf by nanocasting[J]. Langmuir, 2005, 21(19): 8978-8981.
22 Feng L, Zhang Y N, Xi J M, et al. Petal effect: a superhydrophobic state with high adhesive force[J]. Langmuir, 2008, 24: 4114-4119.
23 Chen Y, Wang H, Yao Q, et al. Biomimetic taro leaf-like films decorated on wood surfaces using soft lithography for superparamagnetic and superhydrophobic performance[J]. Journal of Materials Science, 2017, 52(12): 7428-7438.
24 Boinovich L B, Modin E B, Sayfutdinova A R, et al. Combination of functional nanoengineering and nanosecond laser texturing for design of superhydrophobic aluminum alloy with exceptional mechanical and chemical properties[J]. ACS Nano, 2017, 11(10): 10113-10123.
25 Siddiqui A R, Maurya R, Balani K. Superhydrophobic self-floating carbon nanofiber coating for efficient gravity-directed oil/water separation[J]. Journal of Materials Chemistry A, 2017, 5(6): 2936-2946.
26 Khan A, Huang K, Hu M, et al. Wetting behavior of metal-catalyzed chemical vapor deposition-grown one-dimensional cubic-SiC nanostructures[J]. Langmuir, 2018, 34(18): 5214-5224.
27 Doshi D A, Shah P B, Singh S, et al. Investigating the Interface of Superhydrophobic Surfaces in Contact with Water[J]. Langmuir, 2005, 21: 7805-7811.
28 Cho K H, Chen L J. Fabrication of sticky and slippery superhydrophobic surfaces via spin-coating silica nanoparticles onto flat/patterned substrates[J]. Nanotechnology, 2011, 22(44): 445706.
29 Khanjani P, King A W T, Partl G J, et al. Superhydrophobic paper from nanostructured fluorinated cellulose esters[J]. ACS Applied Materials and Interfaces, 2018, 10(13): 11280-11288.
30 Yu T L, Lu S X, Xu W G, et al. Preparation of superhydrophobic/ superoleophilic copper coated titanium mesh with excellent ice-phobic and water-oil separation performance[J]. Applied Surface Science, 2019, 476: 353-362.
31 Xu W G, Liu H Q, Lu S X, et al. Fabrication of superhydrophobic surfaces with hierarchical structure through a solution-immersion process on copper and galvanized iron substrates[J]. Langmuir, 2008, 24(19): 10895-10900.
32 Pan Y, Liu L, Zhang Z, et al. Surfaces with controllable super-wettability and applications for smart oil-water separation[J]. Chemical Engineering Journal, 2019, 378: 122178.
33 李希鹏. 超浸润复合膜材料的制备及其在油水分离中的应用研究[D]. 天津: 天津大学, 2020.
Li X P. Preparation of superwetting composite membrane for the application of oil/water separation[D]. Tianjin: Tianjin University, 2020.
34 谷金翠, 张磊, 张佳玮, 等. 二维碳基薄膜及其高分子复合材料的构筑和油水分离性能研究进展[J]. 科学通报, 2019, 64(22): 2316-2331.
Gu J C, Zhang L, Zhang J W, et al. Recent advance of two-dimensional carbon-based films and their polymer functionalized membranes for oil/water separation[J]. Chinese Science Bulletin, 2019, 64(22): 2316-2331.
35 Wang H, Hu X, Ke Z, et al. Review: porous metal filters and membranes for oil-water separation[J]. Nanoscale Research Letters, 2018, 13(1): 284.
36 Bu Y, Huang J, Zhang S, et al. Robust superhydrophobic surface by nature-inspired polyphenol chemistry for effective oil-water separation[J]. Applied Surface Science, 2018, 440: 535-546.
37 Xiong Z, Lin H, Liu F, et al. Flexible PVDF membranes with exceptional robust superwetting surface for continuous separation of oil/water emulsions[J]. Scientific Reports, 2017, 7(1): 14099.
38 Nam H J, Kim Y M, Kwon Y H, et al. Enamel surface remineralization effect by fluorinated graphite and bioactive glass-containing orthodontic bonding resin[J]. Materials, 2019, 12(8): E1308.
39 He H M, Gao L, Yang X J, et al. Studies on the superhydrophobic properties of polypropylene/ polydimethylsiloxane/ graphite fluoride composites[J]. Journal of Fluorine Chemistry, 2013, 156: 158-163.
40 Li Y, Ge B, Men X, et al. A facile and fast approach to mechanically stable and rapid self-healing waterproof fabrics[J]. Composites Science and Technology, 2016, 125: 55-61.
41 Cheng S H, Zou K, Okino F, et al. Reversible fluorination of graphene: evidence of a two-dimensional wide bandgap semiconductor[J]. Physical Review B, 2010, 81(20): 1-5
42 Chang H, Cheng J, Liu X, et al. Facile synthesis of wide-bandgap fluorinated graphene semiconductors[J]. Chemistry, 2011, 17(32): 8896-8903.
43 康文泽, 李尚益, 刘玉. 氧化法制备氟化石墨烯及其性能研究[J]. 炭素技术, 2018, 37(2): 32-36.
Kang W Z, Li S Y, Liu Y. Preparation of fluorinated graphene by oxidation method[J]. Carbon Techniques, 2018, 37(2): 32-36.
44 Sun T L, Feng L, Gao X F, et al. Bioinspired surfaces with special wettability[J]. Accounts of Chemical Research, 2005, 38(8): 644-652.
45 Subhash L S, Basavraj G A, Shridhar M C, et al. Recent progress in preparation of superhydrophobic surfaces: a review[J]. Journal of Surface Engineered Materials and Advanced Technology, 2012, 2(2): 76-94.
46 Ensikat H J, Mayser M, Barthlott W. Superhydrophobic and adhesive properties of surfaces: testing the quality by an elaborated scanning electron microscopy method[J]. Langmuir, 2012, 28(40): 14338-14346.
[1] 吴延鹏, 雷晓宇, 陆禹名, 陈卉妮. 太阳能利用透光表面超疏水增透膜研究进展[J]. 化工学报, 2021, 72(S1): 21-29.
[2] 张亚爽, 李洪, 从海峰, 韩红明, 李鑫钢, 高鑫. 微波强化液桥式螺旋降膜蒸发器数值模拟[J]. 化工学报, 2021, 72(S1): 227-235.
[3] 苏伟, 芦志飞, 张小松. 竖直超疏水翅片间霜层动态生长特性[J]. 化工学报, 2021, 72(S1): 244-256.
[4] 赵文一, 匡以武, 王文, 张红星, 苗建印. 水平管内冷凝流动的稳定性[J]. 化工学报, 2021, 72(S1): 257-265.
[5] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[6] 刘献飞, 王恒, 王方, 李志强, 朱彩霞, 张浩飞. 单螺杆膨胀机螺旋槽道内液膜分布均匀特性[J]. 化工学报, 2021, 72(S1): 336-341.
[7] 付凤艳, 邢广恩. 碱性燃料电池用阴离子交换膜的研究进展[J]. 化工学报, 2021, 72(S1): 42-52.
[8] 吴中杰, 刘则艳, 谢连科, 崔美, 黄仁亮. 聚偏氟乙烯膜亲水改性及其乳液分离与重金属吸附应用[J]. 化工学报, 2021, 72(S1): 421-429.
[9] 徐健玮, 梁颖宗, 罗向龙, 陈健勇, 杨智, 陈颖. 液化天然气深冷-膜蒸馏海水淡化系统集成与分析[J]. 化工学报, 2021, 72(S1): 437-444.
[10] 陈晨, 王明明, 王志刚, 谭小耀. 镍基非对称中空纤维膜用于乙醇自热重整制氢[J]. 化工学报, 2021, 72(S1): 482-493.
[11] 李海涛, 孟平凡, 张因, 武瑞芳, 黄鑫, 班丽君, 韩旭东, 席琳, 王兴皓, 田博辉, 赵永祥. SiO2网络限域CuO纳米晶的甲醛乙炔化性能研究[J]. 化工学报, 2021, 72(9): 4708-4717.
[12] 耿晨旭, 孙玉绣, 黄宏亮, 郭翔宇, 乔志华, 仲崇立. 机械化学法合成小尺寸MOF填料助力高性能CO2分离[J]. 化工学报, 2021, 72(9): 4750-4758.
[13] 张杰, 刘壮, 巨晓洁, 谢锐, 汪伟, 褚良银. 层状Mg/Al氢氧化物/聚乙烯醇复合膜的制备及染料截留性能的研究[J]. 化工学报, 2021, 72(9): 4941-4949.
[14] 任辉, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 润湿性图案表面上的液滴侧向弹跳行为[J]. 化工学报, 2021, 72(8): 4255-4266.
[15] 陆俊杰, 张炜, 马浩. 基于F-K滑移流模型的柱面微槽气浮密封浮升能力分析[J]. 化工学报, 2021, 72(8): 4267-4278.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡志华, 杨燕华, 刘磊, 周芳德. 垂直上升管内有水平柱体时气液两相局部流型转变的研究[J]. CIESC Journal, 2006, 14(4): 442 -449 .
[2] 叶树明, 蒋凯, 蒋春跃, 潘勤敏. 聚合物系动态超临界流体脱挥[J]. CIESC Journal, 2005, 13(6): 732 -735 .
[3] 蒋国强, 朱德权, 昝佳, 丁富新. 电致孔经皮给药:表面活性剂对孔道存在时间和药物传输的影响[J]. CIESC Journal, 2007, 15(3): 397 -402 .
[4] 吉远辉, 吉晓燕, 冯新, 刘畅, 吕玲红, 陆小华. CO2-H2O和CO2-H2O-NaCl 体系的相平衡研究进展[J]. CIESC Journal, 2007, 15(3): 439 -448 .
[5] 赵锁奇, 许志明, 王仁安. 超临界流体萃取制备脱沥青油与沥青微粒[J]. CIESC Journal, 2003, 11(6): 691 -695 .
[6] 宋宝东, 丁辉, 吴金川, Hayashi Y., Talukder MMR, 王世昌. 表面活性剂包衣Candida rugosa脂肪酶在无溶剂下油水两相体系中催化橄榄油水解[J]. CIESC Journal, 2003, 11(5): 601 -603 .
[7] 罗坤, 郑友取, 樊建人, 岑可法. 三维混合层中大涡结构与扩散颗粒的相互作用[J]. CIESC Journal, 2003, 11(4): 377 -382 .
[8] 马红武, 赵学明, 郭晓峰. 通过通量平衡分析计算经验和真实维持系数[J]. CIESC Journal, 2002, 10(1): 89 -92 .
[9] 华贲, 周章玉, 成思危. 化工企业集成的层次模型结构体系[J]. CIESC Journal, 2001, 9(4): 395 -401 .
[10] 杨根生, 施介华, 李景华, 王普, 姚善泾. 十二烷基磺酸钠/异辛烷/正构醇/水微乳状液的相行为及其结构转变的研究[J]. CIESC Journal, 2002, 10(6): 670 -672 .