化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 336-342.doi: 10.11949/0438-1157.20190532

• 材料化学工程与纳米技术 • 上一篇    下一篇

Janus三角纳米片和“三明治”三角纳米片消光特性的数值研究

王甜蜜(),唐桂华()   

  1. 西安交通大学能源与动力工程学院热流科学与工程教育部重点实验室,陕西 西安 710049
  • 收稿日期:2019-05-19 修回日期:2019-05-27 出版日期:2019-09-06 发布日期:2019-09-06
  • 通讯作者: 唐桂华 E-mail:tianmiwang@qq.com;ghtang@mail.xjtu.edu.cn
  • 作者简介:王甜蜜(1993—),女,博士研究生,tianmiwang@qq.com
  • 基金资助:
    国家自然科学基金项目(51825604)

Plasmonic nanofluids based on Janus nanosheets and sandwich-structured nanosheets for solar energy harvest

Tianmi WANG(),Guihua TANG()   

  1. MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • Received:2019-05-19 Revised:2019-05-27 Published:2019-09-06 Online:2019-09-06
  • Contact: Guihua TANG E-mail:tianmiwang@qq.com;ghtang@mail.xjtu.edu.cn

摘要:

基于离散偶极近似法(DDA)计算了不同组分的Janus三角纳米片和“三明治”三角纳米片的消光特性,两种纳米片在紫外-可见光波段均出现了明显的吸收峰。当纳米片较小时,消光特性主要以吸收为主,当纳米片逐渐增大,散射作用开始明显。当纳米片增大时,吸收峰向长波方向移动并且峰会变宽。二氧化硅与银的组合能在较宽的波段内激发表面等离激元效应,因此波峰比金银组合纳米片的波峰宽,但是吸收峰值较后者低。增加纳米片的层数,或者添加纳米片的组分,可以在一定范围内对纳米片的消光特性进行调节,从而提高太阳能光热转换效率。

关键词: 太阳能, 离散偶极近似, 消光特性, 光热转换特性, 纳米结构, 数值模拟

Abstract:

Direct absorption solar thermal collectors (DASC) explore the photo-thermal conversion characteristics of fluids to convert solar radiation into thermal energy. Plasmonic nanofluids have been used to improve the efficiency of DASC as working fluids, because of the localized surface plasmon resonance (LSPR) effect excited on the surface of metallic nanoparticles. Recently, Janus materials have witnessed fast development due to their diversified promising performances and practical applications. Compared with their spherical counterparts, Janus nanosheets have gained more concerns for their highly anisotropic shape. Herein, the discrete dipole approximation (DDA) is employed to calculate the extinction characteristics of Janus triangular nanosheets and sandwich-structured triangular nanosheets with different sizes. The results show that the LSPR of Janus nanosheets and sandwich-structured nanosheets can be improved by tuning the size. For Janus nanosheets, the thickness plays an important role on the resonance strength, whereas it has little effect on resonance frequency. On the contrary, the resonance strength and resonance frequency of sandwich-structured nanosheets can be influenced by the thickness evidently. Effective control of extinction characteristics can be achieved by varying the relative thickness of each layer of nanosheets, to adjust the extinction peak to the desired band. Optimizing the thickness of the Janus nanosheets and sandwich-structured nanosheets, or combining different sizes of nanosheets, will broaden the effective absorption band, thereby improve the photo-thermal conversion efficiency and the efficiency of direct absorption solar thermal collectors.

Key words: solar energy, discrete dipole approximation, extinction characteristics, photo-thermal conversion, nanostructure, numerical simulation

中图分类号: 

  • TK 124

图1

Janus三角纳米片(a)和“三明治”三角纳米片(b)结构示意图"

表1

Janus三角纳米片和“三明治”三角纳米片几何尺寸"

a eff /nm l/nm h/nm Janus三角纳米片层厚 /nm “三明治”三角纳米片层厚 /nm
5 26.3 5.3 2.6 1.8
10 52.5 10.5 5.33 3.5
20 105.1 21.0 10.5 7.0
30 157.6 31.5 15.8 10.5
50 262.7 52.5 26.3 17.5
60 315.3 63.1 31.5 21.0
80 420. 4 84.1 42.0 28.0
100 525.5 105.1 52.5 35.0

图2

银、二氧化硅和金的介电函数"

图3

银-二氧化硅Janus三角纳米片和银-金Janus三角纳米片的消光特性"

图4

银-二氧化硅-银“三明治”三角纳米片和银-金-银“三明治”三角纳米片的消光特性"

图5

二氧化硅-银-二氧化硅“三明治”三角纳米片的消光特性"

1 Lund H , Mathiesen B V . Energy system analysis of 100% renewable energy systems—the case of Denmark in years 2030 and 2050 [J]. Energy, 2009, 34(5): 524-531.
2 Kalnæs S E , Jelle B P . Phase change materials and products for building applications: a state-of-the-art review and future research opportunities [J]. Energy and Buildings, 2015, 94: 150-176.
3 Lin Y , Alva G , Fang G . Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials [J]. Energy, 2018, 165: 685-708.
4 Thirugnanasambandam M , Iniyan S , Goic R . A review of solar thermal technologies [J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 312-322.
5 Wang J , O’Donnell J , Brandt A R . Potential solar energy use in the global petroleum sector [J]. Energy, 2017, 118: 884-892.
6 Li G , Shittu S , Diallo T M O , et al . A review of solar photovoltaic-thermoelectric hybrid system for electricity generation [J]. Energy, 2018, 158: 41-58.
7 Gorji T B , Ranjbar A A . Thermal and exergy optimization of a nanofluid-based direct absorption solar collector [J]. Renewable Energy, 2017, 106: 274-287.
8 Qin C , Kang K , Lee I , et al . Optimization of a direct absorption solar collector with blended plasmonic nanofluids [J]. Solar Energy, 2017, 150: 512-520.
9 Leong K Y , Ong H C , Amer N H , et al . An overview on current application of nanofluids in solar thermal collector and its challenges [J]. Renewable and Sustainable Energy Reviews, 2016, 53: 1092-1105.
10 Loni R , Asli-Ardeh E A , Ghobadian B , et al . Energy and exergy investigation of alumina/oil and silica/oil nanofluids in hemispherical cavity receiver: experimental study [J]. Energy, 2018, 164: 275-287.
11 Gorji T B , Ranjbar A A . A review on optical properties and application of nanofluids in direct absorption solar collectors (DASCs) [J]. Renewable and Sustainable Energy Reviews, 2017, 72: 10-32.
12 Minardi J E , Chuang H N . Performance of a “black” liquid flat-plate solar collector [J]. Solar Energy, 1975, 17(3): 179-183.
13 Liu X , Xuan Y . Full-spectrum volumetric solar thermal conversion via photonic nanofluids [J]. Nanoscale, 2017, 9(39): 14854-14860.
14 Green M A , Pillai S . Harnessing plasmonics for solar cells [J]. Nature Photonics, 2012, 6: 130-132.
15 Ma X C , Dai Y , Yu L , et al . Energy transfer in plasmonic photocatalytic composites [J]. Light: Science & Applications, 2016, 5: e16017.
16 Yang X , Yu H , Guo X , et al . Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction [J]. Materials Today Energy, 2017, 5: 72-78.
17 An W , Wu J , Zhu T , et al . Experimental investigation of a concentrating PV/T collector with Cu9S5 nanofluid spectral splitting filter [J]. Applied Energy, 2016, 184: 197-206.
18 Hu J T , Odom T W , Lieber C M . Chemistry and physics in one dimension: synthesis and properties of nanowires and nano-tubes [J]. Accounts of Chemical Research, 1999, 32(5): 435-445.
19 Pan Z W , Dai Z R , Wang Z L . Nanobelts of semiconducting oxides [J].Science, 2001, 291: 1947-1949.
20 雷琴 . 利用DDA方法研究金属银及其核壳结构纳米粒子的光学性质[D]. 天津: 南开大学, 2014.
Lei Q . Study on optical properties of metallic silver and its core-shell structure nanoparticles by DDA method [D]. Tianjin: Nankai University, 2014.
21 Xuan Y M , Duan H L , Li Q . Enhancement of solar energy absorption using a plasmonic nanofluid based on TiO2/Ag composite nanoparticles [J]. RSC Advances, 2014, 4(31): 16206-16213.
22 Lv W , Phelan P E , Swaminathan R , et al . Multifunctional core-shell nanoparticle suspensions for efficient absorption [J]. Journal of Solar Energy Engineering, 2013, 135(2): 021004.
23 Wu Y , Zhou L , Du X , et al . Optical and thermal radiative properties of plasmonic nanofluids containing core–shell composite nanoparticles for efficient photothermal conversion [J]. International Journal of Heat and Mass Transfer, 2015, 82: 545-554.
24 Lai X . Recent advances in micro-/nano-structured hollow spheres for energy applications: from simple to complex systems [J]. Energy & Environmental Science, 2012, 5(2): 5604-5618.
25 Dong Z , Lai X , Halpert J E , et al . Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency [J]. Advanced Materials, 2012, 24(8): 1046-1049.
26 Lou X . Hollow micro/nanostructures: synthesis and applications [J]. Materials, 2008, 20(21): 3987-4019.
27 Grald E W , Kuehn T H . Performance analysis of a parabolic trough solar collector with a porous absorber receiver [J]. Solar Energy, 1989, 42(4): 281-292.
28 de Gennes P G . Soft matter [J]. Reviews of Modern Physics, 1992, 64(3): 645-648.
29 Du M , Tang G H . Plasmonic nanofluids based on gold nanorods/nanoellipsoids/nanosheets for solar energy harvesting [J]. Solar Energy, 2016, 137: 393-400.
30 Rakić A D , Djurišić A B , Elazar J M , et al . Optical properties of metallic films for vertical-cavity optoelectronic devices [J]. Applied Optics, 1998, 37(22): 5271-5283.
[1] 徐玲玲, 蒲亮. 基于热短路问题的仿生地埋管换热器模拟[J]. 化工学报, 2021, 72(S1): 134-139.
[2] 山訸, 马秋鸣, 潘权稳, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器冷却液侧传热与流动性能仿真[J]. 化工学报, 2021, 72(S1): 194-202.
[3] 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209.
[4] 吴延鹏, 雷晓宇, 陆禹名, 陈卉妮. 太阳能利用透光表面超疏水增透膜研究进展[J]. 化工学报, 2021, 72(S1): 21-29.
[5] 张亚爽, 李洪, 从海峰, 韩红明, 李鑫钢, 高鑫. 微波强化液桥式螺旋降膜蒸发器数值模拟[J]. 化工学报, 2021, 72(S1): 227-235.
[6] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[7] 海鹏, 李振兴, 李珂, 黄红梅, 郑文帅, 高新强, 戴巍, 沈俊. 多层主动磁回热器的仿真优化[J]. 化工学报, 2021, 72(S1): 302-309.
[8] 王玲玥, 朱进容, 王从乐, 吕辉, 成纯富, 张金业. 圆管束中导流器对其自然对流换热的影响[J]. 化工学报, 2021, 72(S1): 310-317.
[9] 候召宁, 王林, 闫晓娜, 李修真, 王占伟, 梁坤峰. 多超声振子作用下气泡动力学数值模拟[J]. 化工学报, 2021, 72(S1): 362-370.
[10] 宋粉红, 王伟, 陈奇成, 范晶. 电场作用下双液滴聚合特性[J]. 化工学报, 2021, 72(S1): 371-381.
[11] 赵浚哲, 刘舫辰, 李元鲁, 杜文静. 低Reynolds数下内置三棱柱通道的流动与传热特性[J]. 化工学报, 2021, 72(S1): 382-389.
[12] 陈建业, 丁月, 吴钊, 禹云星, 邵双全. 带涡流管的新型加氢流程数值研究[J]. 化工学报, 2021, 72(S1): 461-466.
[13] 张怡洁, 刘星, 陈振武, 张晓春, 周勇, 丘建栋, 顾文波, 马涛. 分布式光伏储能系统的设计方法及运行特性[J]. 化工学报, 2021, 72(S1): 503-511.
[14] 刘辰玥, 郑通, 刘渊博, 温荣福, 陈凯, 马学虎. 异形仿生换热器壳侧对流换热的高效低阻特性研究[J]. 化工学报, 2021, 72(9): 4511-4522.
[15] 刘洋, AYUB Iqra, 杨福胜, 吴震, 张早校. 基于金属氢化物高温蓄热的氢热耦合传递机理[J]. 化工学报, 2021, 72(9): 4607-4615.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王志, 赵媛媛, 叶楠, 王纪孝, 赵之平, 王世昌. 微滤和超滤膜流动电位的四种测量操作方式[J]. CIESC Journal, 2006, 14(4): 456 -463 .
[2] 刘永健, 袁希钢, 罗祎青. 基于浓度间隔分析的用水系统集成(I)非传质操作[J]. CIESC Journal, 2007, 15(3): 361 -368 .
[3] 陈晶瑜, 张磊, 陈金春, 陈国强. Ralstonia eutropha PHB4重组菌合成PHA共聚物及性质测定[J]. CIESC Journal, 2007, 15(3): 391 -396 .
[4] 洪定一. 化工进展——中国石化工业回顾[J]. CIESC Journal, 2001, 9(3): 229 -234 .
[5] 杨超, 毛在砂. 模拟变形液滴和气泡运动的改进水平集算法[J]. CIESC Journal, 2002, 10(3): 263 -272 .
[6] 周立芳, 钱积新. 多频多变量预测控制系统的IMC结构及其改进算法[J]. CIESC Journal, 2001, 9(3): 273 -279 .
[7] 陈振兴, 黄彩娟. ZX型阻垢剂在食盐电解液蒸发过程中的阻垢性能[J]. CIESC Journal, 2001, 9(3): 280 -283 .
[8] 陈丰秋, 吴素芳, 陈纪忠, 戎顺熙. 难降解芳烃化合物在超临界水中氧化的COD去除率的研究[J]. CIESC Journal, 2001, 9(2): 137 -140 .
[9] 王丙强, 蔡钧, 刘洪来, 胡英. 硬球链流体在狭缝中密度分布的Monte Carlo模拟[J]. CIESC Journal, 2001, 9(2): 156 -161 .
[10] 任迪峰, 毛志怀, 王建中. 中草药干燥过程中质量退化动力学模型的研究[J]. CIESC Journal, 2004, 12(6): 822 -825 .