化工学报 ›› 2020, Vol. 71 ›› Issue (7): 3220-3228.doi: 10.11949/0438-1157.20191501
Shurong YU(),Junhua DING(
),Shipeng WANG,Hong LIU,Xuexing DING,Baocai SUN
摘要:
航空发动机柱面密封常因动压不足导致浮环碰磨而破裂。据此利用Fluent软件对现役柱面无槽气膜和螺旋槽气膜两种模型进行了流场动压数值模拟,并进行试验验证。研究结果表明:对于无槽气膜模型,增大偏心率、转速和压差,密封动压效应增强。偏心率和压差的增大会提高模型泄漏率,但转速的改变对模型泄漏率的影响很小;对于螺旋槽气膜密封,增大偏心率、转速和压差,气膜浮升力提升。随偏心率和压差的增大,模型泄漏率随之升高。综合以上两条结论可得,转速是影响泄漏率的次要因素;螺旋槽模型相对无槽模型,动压效果好,泄漏率小,相同工况下具有更好的动压效应,此研究对于研发更优的柱面密封结构有重要参考意义。
中图分类号:
1 | 王泓然, 张栋善. 航空发动机密封技术研究[J]. 科学咨询(科技·管理), 2018, 589(6): 52-52. |
Wang H R, Zhang D S. Research on sealing technology of aeroengine[J]. Scientific Consulting (Science and Technology Management), 2018, 589(6): 52-52. | |
2 | 马纲, 沈心敏. 先进气膜密封技术研究进展与分析[J]. 航空制造技术, 2009, 3: 58-61. |
Ma G, Shen X M. Research progress and analysis of advanced gas film sealing technology[J]. Aviation Manufacturing Technology, 2009, 3: 58-61. | |
3 | Dunlap P H J. An overview of advanced elastomeric seal development and testing capabilities at NASA Glenn research center[C]// AIAA/ASME/SAE/ASEE Joint Propulsion Conference. 2015. |
4 | Ha T W, Lee Y B, Kim C H. Leakage and rotordynamic analysis of a high pressure floating ring seal in the turbo pump unit of a liquid rocket engine[J]. Tribology International, 2002, 35(3): 153-161. |
5 | Li G, Zhang Q, Huang E, et al. Leakage performance of floating ring seal in cold/hot state for aero-engine[J]. Chinese Journal of Aeronautics, 2019, 32(9): 2085-2094. |
6 | Vohr J H, Chow C Y. Characteristics of herringbone-grooved, gas-lubricated journal bearings[J]. Asme. J. Basic Eng., 1964, 87(3): 568-576. |
7 | Miyanaga N, Tomioka J. Effect of support stiffness and damping on stability characteristics of herringbone-grooved aerodynamic journal bearings mounted on viscoelastic supports[J]. Tribology International, 2016, 100: 195-203. |
8 | Zhu H T, Ding Q. Numerical analysis of static characteristics of herringbone grooved hydrodynamic journal bearing[J]. Applied Mechanics and Materials, 2011, 105/106/107: 2259-2262. |
9 | 于贺春. 高速静压气体轴承—转子系统的特性研究[D]. 大连:大连海事大学, 2011. |
Yu H C. Study on the characteristics of high speed hydrostatic gas bearing rotor system[D]. Dalian:Dalian Maritime University, 2011. | |
10 | 马纲, 徐万孚, 徐广州, 等. 建立雷诺方程的一种新概念[J]. 润滑与密封, 2006, 9: 36-39+43. |
Ma G, Xu W F, Xu G Z, et al. A new concept of establishing Reynolds equation[J]. Lubrication and Sealing, 2006, 9: 36-39+43. | |
11 | Mel’nik V A. Calculating leaks in rotor-machine radial slot seals. Part 1. Method based on calculated and empirical local pressure loss coefficients[J]. Chemical and Petroleum Engineering, 2009, 45(9/10): 570-576. |
12 | Mel’nik V A. Calculation of the characteristics of seals with floating rings[J]. Chemical and Petroleum Engineering, 2013, 49(7/8): 542-548. |
13 | 马纲, 何军, 栗秀花, 等. 柱面气膜密封动力特性系数的数值计算[J]. 机械工程学报, 2013, 49(5): 55-62. |
Ma G, He J, Li X H, et al. Numerical calculation of dynamic characteristic coefficient of cylindrical gas film seal[J]. Journal of Mechanical Engineering, 2013, 49(5): 55-62. | |
14 | 马纲, 何军, 孙晓军, 等. 非线性数值模拟柱面气膜密封动态特性[J]. 航空动力学报, 2014, 29(1): 1-8. |
Ma G, He J, Sun X J, et al. Nonlinear numerical simulation of dynamic characteristics of cylindrical gas film seal [J]. Journal of Aeronautical Dynamics, 2014, 29(1): 1-8. | |
15 | Ma G, Li X H, Shen X M. Multi-dimensional optimization of groove parameters in gas film seal[J]. Advanced Materials Research, 2011, 199/200: 1303-1307. |
16 | 丁雪兴, 贺振泓, 张伟政, 等. 柱面螺旋槽干气密封微尺度流动场稳态近似计算[J]. 应用力学学报, 2018, 35(1): 99-105+230. |
Ding X X, He Z H, Zhang W Z, et al. Steady state approximate calculation of micro scale flow field in cylindrical spiral groove dry gas seal[J]. Journal of Applied Mechanics, 2018, 35(1): 99-105 + 230. | |
17 | 丁雪兴, 贺振泓, 张伟政, 等. 柱面螺旋槽气膜密封微尺度流动场稳态特性分析[J]. 化工学报, 2017, 69(4): 1537-1546. |
Ding X X, He Z H, Zhang W Z, et al. Analysis of steady state characteristics of micro scale flow field in cylindrical spiral groove gas film seal[J]. CIESC Journal, 2017, 69(4): 1537-1546. | |
18 | Childs D W, Wade J. Rotordynamic-coefficient and leakage characteristics for hole-pattern-stator annular gas seals-measurements versus predictions[J]. Journal of Tribology, 2004, 126(2): 326-333. |
19 | Wu D Z, Jiang X K, Li S, et al. A new transient CFD method for determining the dynamic coefficients of liquid annular seals[J]. Journal of Mechanical Science & Technology, 2016, 30(8): 3477-3486. |
20 | Wu D Z, Jiang X K, Chu N, et al. Numerical simulation on rotordynamic characteristics of annular seal under uniform and non-uniform flows[J]. Journal of Central South University, 2017, 24(8): 1889-1897. |
21 | 马纲, 杨卫如. 双向旋转柱面气膜密封性能数值模拟与参数优化[J]. 北京航空航天大学学报, 2016, 42(11): 2279-2288. |
Ma G, Yang W R. Numerical simulation and parameter optimization of gas film sealing performance of two-way rotating cylinder[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(11): 2279-2288. | |
22 | 马纲, 罗先海, 沈心敏. 端柱面组合气膜密封系统稳态特性数值模拟与分析[J]. 航空动力学报, 2015, 30(1): 22-28. |
Ma G, Luo X H, Shen X M. Numerical simulation and analysis of steady-state characteristics of end cylinder combined gas film seal system [J]. Journal of Aeronautical Dynamics, 2015, 30(1): 22-28. | |
23 | 苏泽辉, 刘美红. T型槽柱面气膜密封CFD数值分析[J]. 流体机械, 2016, 44(7): 33-37. |
Su Z H, Liu M H. CFD numerical analysis of T-groove cylindrical gas film seal[J]. Fluid Machinery, 2016, 44(7): 33-37. | |
24 | 苏泽辉, 刘美红. T型槽柱面气膜密封稳态性能数值分析[J]. 机械与电子, 2015, 12: 41-44. |
Su Z H, Liu M H. Numerical analysis of steady-state performance of T-groove cylinder gas film seal[J]. Mechatronics, 2015, 12: 41-44. | |
25 | 张学清. 高温微气体动压轴承非等温气膜动力特性及箔片固体润滑涂层研究[D]. 重庆: 重庆大学, 2016. |
Zhang X Q. Study on dynamic characteristics of non-isothermal gas film and foil solid lubricating coating of high temperature micro-gas dynamic pressure bearing [D]. Chongqing: Chongqing University, 2016. | |
26 | 赵广, 于贺春, 马文琦, 等. 转子-气体轴承-弹性支承系统研究综述[J]. 润滑与密封, 2010, 35(11): 115-122+106. |
Zhao G, Yu H C, Ma W Q, et al. Review of rotor gas bearing elastic support system[J]. Lubrication and Sealing, 2010, 35(11): 115-122+106. | |
27 | 赵良举, 苏晓燕, 杜长春, 等. 旋转唇形油封泵吸效应及影响因素分析[J]. 合肥工业大学学报(自然科学版), 2011, 34(12): 1782-1786. |
Zhao L J, Su X Y, Du C C, et al. Analysis of pumping effect and influencing factors of rotary lip oil seal[J]. Journal of Hefei University of Technology (Natural Science Edition), 2011, 34(12): 1782-1786. | |
28 | 董慧芳. 激光加工微凹坑轴表面对唇形密封泵吸效应与摩擦特性的影响[D]. 合肥: 合肥工业大学, 2012. |
Dong H F. The effect of laser processing on the suction and friction characteristics of lip seal[D]. Hefei: Hefei University of Technology, 2012. | |
29 | 苏泽辉, 刘美红. 柱面气膜密封性能的CFD数值分析[J]. 润滑与密封, 2016, 41(9): 49-53. |
Su Z H, Liu M H. CFD numerical analysis of cylinder gas film sealing performance[J]. Lubrication and Sealing, 2016, 41(9): 49-53. | |
30 | Andrés L S, Ashton Z. Comparison of leakage performance in three types of gas annular seals operating at a high temperature (300°C)[J]. Tribology Transactions, 2010, 53(3): 463-471 |
[1] | 王兆奇, 李孟山, 胡海涛, 魏文建. 双排对折型微通道换热器仿真模型开发[J]. 化工学报, 2021, 72(S1): 113-119. |
[2] | 徐梦凯, 李舒宏, 金正浩. 氨-水-溴化锂三元工质氨吸收式制冷性能[J]. 化工学报, 2021, 72(S1): 127-133. |
[3] | 徐玲玲, 蒲亮. 基于热短路问题的仿生地埋管换热器模拟[J]. 化工学报, 2021, 72(S1): 134-139. |
[4] | 山訸, 马秋鸣, 潘权稳, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器冷却液侧传热与流动性能仿真[J]. 化工学报, 2021, 72(S1): 194-202. |
[5] | 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209. |
[6] | 张亚爽, 李洪, 从海峰, 韩红明, 李鑫钢, 高鑫. 微波强化液桥式螺旋降膜蒸发器数值模拟[J]. 化工学报, 2021, 72(S1): 227-235. |
[7] | 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294. |
[8] | 海鹏, 李振兴, 李珂, 黄红梅, 郑文帅, 高新强, 戴巍, 沈俊. 多层主动磁回热器的仿真优化[J]. 化工学报, 2021, 72(S1): 302-309. |
[9] | 王玲玥, 朱进容, 王从乐, 吕辉, 成纯富, 张金业. 圆管束中导流器对其自然对流换热的影响[J]. 化工学报, 2021, 72(S1): 310-317. |
[10] | 候召宁, 王林, 闫晓娜, 李修真, 王占伟, 梁坤峰. 多超声振子作用下气泡动力学数值模拟[J]. 化工学报, 2021, 72(S1): 362-370. |
[11] | 宋粉红, 王伟, 陈奇成, 范晶. 电场作用下双液滴聚合特性[J]. 化工学报, 2021, 72(S1): 371-381. |
[12] | 赵浚哲, 刘舫辰, 李元鲁, 杜文静. 低Reynolds数下内置三棱柱通道的流动与传热特性[J]. 化工学报, 2021, 72(S1): 382-389. |
[13] | 陈建业, 丁月, 吴钊, 禹云星, 邵双全. 带涡流管的新型加氢流程数值研究[J]. 化工学报, 2021, 72(S1): 461-466. |
[14] | 刘辰玥, 郑通, 刘渊博, 温荣福, 陈凯, 马学虎. 异形仿生换热器壳侧对流换热的高效低阻特性研究[J]. 化工学报, 2021, 72(9): 4511-4522. |
[15] | 刘洋, AYUB Iqra, 杨福胜, 吴震, 张早校. 基于金属氢化物高温蓄热的氢热耦合传递机理[J]. 化工学报, 2021, 72(9): 4607-4615. |
|