化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 278-294.doi: 10.11949/0438-1157.20200880

• 流体力学与传递现象 • 上一篇    下一篇

多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟

张毅1(),张冠敏1(),刘磊1,梁凯1,屈晓航1,2,田茂诚1   

  1. 1.山东大学能源与动力工程学院,山东 济南 250061
    2.山东理工大学能源与动力工程系,山东 淄博 255000
  • 收稿日期:2020-07-03 修回日期:2020-10-16 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 张冠敏 E-mail:yizhang1815@outlook.com;zhgm@sdu.edu.cn
  • 作者简介:张毅(1988—),男,博士研究生,yizhang1815@outlook.com
  • 基金资助:
    国家自然科学基金项目(51576115);山东省自然科学基金项目(ZR2019BEE008)

Gas-liquid falling film flow characteristics on surface of multi-row plane finned-tube heat exchanger: a 3D numerical study

ZHANG Yi1(),ZHANG Guanmin1(),LIU Lei1,LIANG Kai1,QU Xiaohang1,2,TIAN Maocheng1   

  1. 1.School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
    2.Department of Energy and Power Engineering, Shandong University of Technology, Zibo 255000, Shandong, China
  • Received:2020-07-03 Revised:2020-10-16 Published:2021-06-20 Online:2021-06-20
  • Contact: ZHANG Guanmin E-mail:yizhang1815@outlook.com;zhgm@sdu.edu.cn

摘要:

基于VOF模型建立了考虑重力、表面张力及界面摩擦力源项的多排平直翅片管换热器表面气液两相降膜流动三维瞬态CFD模型。不同气流速度下液膜厚度模拟结果与文献中试验值吻合较好,最大偏差小于5%,表明所建立CFD模型是可靠的。通过研究壁面接触角为30°时不同气液Reynolds数下液膜流动特性,结果表明:翅片管表面满膜流的临界Reynolds数Rel为239,临界喷淋密度为0.06 kg/(m·s);在239 ≤ Rel ≤ 995内,其平均液膜厚度较Nusselt理论解高16.8%~35.1%;气液逆流和顺流时气相Reynolds数Reg应分别小于2190.7和3286.0,其主要原因在于过高的Reg会导致气液界面摩擦力快速增大,从而引发液膜破裂和液滴脱落等现象恶化设备性能。总之,气液顺流更有利于在较高气相Reynolds数下实现翅片管表面的较薄满膜流动。

关键词: 降膜流动, 气液两相流, VOF模型, 界面力, 翅片管换热器, 数值模拟

Abstract:

A three-dimensional transient CFD model of multi-row plane finned-tube heat exchanger considering gravity, surface tension and gas-liquid interfacial friction source terms was established firstly based on the VOF method. And then gas-liquid falling film flow characteristics on the surface of the heat exchanger was investigated to provide a theoretical basis for the study of heat and mass transfer enhancement in the closed-type heat source tower. The simulation results of liquid film thickness were agreement with the experimental data in the reference, showing that the established CFD model was reliable. The flow characteristics of liquid film on the fin surface with contact angle of 30° were studied under different gas and liquid Reynolds numbers. The results showed that the critical film Reynolds number and critical spray density of complete film flow on the finned-tube surface are 239 and 0.06 kg/(m·s), respectively. Its mean liquid film thickness is 16.8%—35.1% higher than Nusselt's theoretical solution within the liquid film Reynolds number of 239 to 995. In order to prevent the liquid film break-up and drop falling off from deteriorating the heat transfer process of the equipment, the Reynolds numbers of counter-current and co-current air flow should be less than 2190.7 and 3286.0, respectively. The main reason is that the high Reynolds number of gas phase will lead to the rapid increase of gas-liquid interfacial friction. In a word, the co-current gas-liquid flow is more beneficial to achieve the thin complete film flow at higher air Reynolds number.

Key words: falling film flow, gas-liquid two-phase flow, VOF model, interfacial force, finned-tube heat exchanger, numerical simulation

中图分类号: 

  • TK 124
1 Dong J K, Zhang L, Deng S M, et al. An experimental study on a novel radiant-convective heating system based on air source heat pump [J]. Energy and Buildings, 2018, 158: 812-821.
2 Zhang Y, Zhang G M, Zhang A Q, et al. Frosting phenomenon and frost-free technology of outdoor air heat exchanger for an air-source heat pump system in China: an analysis and review [J]. Energies, 2018, 11(10): 2642.
3 Zhang Q L, Zhang L, Nie J Z, et al. Techno-economic analysis of air source heat pump applied for space heating in Northern China [J]. Applied Energy, 2017, 207: 533-542.
4 Wu P, Wang Z C, Li X F, et al. Energy-saving analysis of air source heat pump integrated with a water storage tank for heating applications [J]. Building and Environment, 2020, 180: 107029.
5 张毅, 张冠敏, 张莉莉, 等. 空气源热泵结霜机理及除霜/抑霜技术研究进展 [J]. 制冷学报, 2018, 39(5): 10-21, 46.
Zhang Y, Zhang G M, Zhang L L, et al. Research progress on frost formation mechanism of air-source heat pump and its defrosting/anti-frosting technology [J]. Journal of Refrigeration, 2018, 39(5): 10-21, 46.
6 Zhang L, Jiang Y Q, Dong J K, et al. An experimental study on the effects of frosting conditions on frost distribution and growth on finned tube heat exchangers [J]. International Journal of Heat and Mass Transfer, 2019, 128: 748-761.
7 Xu X G, Fang Z Q, Wang Z Q. Climatic division based on frosting characteristics of air source heat pumps [J]. Energy and Buildings, 2020, 224: 110219.
8 Song M J, Deng S M, Dang C B, et al. Review on improvement for air source heat pump units during frosting and defrosting [J]. Applied Energy, 2018, 211: 1150-1170.
9 Amer M, Wang C C. Review of defrosting methods [J]. Renewable and Sustainable Energy Reviews, 2017, 73: 53-74.
10 Sheng W, Liu P P, Dang C B, et al. Review of restraint frost method on cold surface [J]. Renewable and Sustainable Energy Reviews, 2017, 79: 806-813.
11 张毅, 张冠敏, 冷学礼, 等. 无霜空气源热泵技术研究进展 [J]. 化工学报, 2020, 71(12): 5400-5419.
Zhang Y, Zhang G M, Leng X L, et al. Research progress on frost-free air source heat pump technology [J]. CIESC Journal, 2020, 71(12): 5400-5419.
12 Qu M L, Zhang R, Chen J B, et al. Experimental analysis of heat coupling during TES based reverse cycle defrosting method for cascade air source heat pumps [J]. Renewable Energy, 2020, 147: 35-42.
13 Qu M L, Tang Y B, Zhang T Y, et al. Experimental investigation on the multi-mode heat discharge process of a PCM heat exchanger during TES based reverse cycle defrosting using in cascade air source heat pumps [J]. Applied Thermal Engineering, 2019, 151: 154-162.
14 Song M J, Xu X G, Mao N, et al. Energy transfer procession in an air source heat pump unit during defrosting [J]. Applied Energy, 2017, 204: 679-689.
15 Zhang L, Fujinawa T, Saikawa M. A new method for preventing air-source heat pump water heaters from frosting [J]. International Journal of Refrigeration, 2012, 35(5): 1327-1334.
16 Wang Z H, Li G C, Wang F H, et al. Techno-economic evaluation of a frost-free air source heat pump water heater [J]. Sustainable Cities and Society, 2020, 57: 102102.
17 Su W, Li H, Sun B, et al. Performance investigation on a frost-free air source heat pump system employing liquid desiccant dehumidification and compressor-assisted regeneration based on exergy and exergoeconomic analysis [J]. Energy Conversion and Management, 2019, 183: 167-181.
18 冯荣, 孟欣, 邓建平, 等. 冷却塔逆用吸热做热源塔技术研究现状[J]. 化工进展, 2018, 37(11): 4135-4142.
Feng R, Meng X, Deng J P, et al. Research progress on cooling tower reversibly used as heat source tower [J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4135-4142.
19 Huang S F, Zuo W D, Lu H X, et al. Performance comparison of a heating tower heat pump and an air-source heat pump: a comprehensive modeling and simulation study [J]. Energy Conversion and Management, 2019, 180: 1039-1054.
20 Jiang Y Q, Fu H Y, Yao Y, et al. Experimental study on concentration change of spray solution used for a novel non-frosting air source heat pump system [J]. Energy and Buildings, 2014, 68: 707-712.
21 付慧影, 姜益强, 姚杨, 等. 喷淋溶液对无霜空气源热泵系统特性的影响 [J]. 化工学报, 2012, 63: 193-198.
Fu H Y, Jiang Y Q, Yao Y, et al. Influence of spray solution on novel non-frosting air source heat pump system performance [J]. CIESC Journal, 2012, 63: 193-198.
22 Lu J, Li W Y, Li Y C, et al. Numerical study on heat and mass transfer characteristics of the counter-flow heat-source tower (CFHST) [J]. Energy and Buildings, 2017, 145: 318-330.
23 Cheng J L, Li N P, Wang K. Study of heat-source-tower heat pump system efficiency [J]. Procedia Engineering, 2015, 121: 915-921.
24 Cheng J L, Zou S H, Chen S Q. Application research on the closed-loop heat-source-tower heat pump air conditioning system in hot-summer and cold-winter zone [J]. Procedia Engineering, 2015, 121: 922-929.
25 贺志明, 李念平, 成剑林, 等. 喷淋工况下闭式热源塔传热特性[J]. 土木建筑与环境工程, 2015, 37(1): 35-39, 54.
He Z M, Li N P, Cheng J L, et al. Performance of closed heat source tower under spraying conditions [J]. Journal of Civil, Architectural & Environmental Engineering, 2015, 37(1): 35-39, 54.
26 Song P Y, Wang B L, Li X T, et al. Experimental research on heat and mass transfer characteristics of cross-flow closed-type heat-source tower [J]. Applied Thermal Engineering, 2018, 135: 289-303.
27 李胜兵, 李念平, 崔海蛟, 等. 低温高湿工况下热源塔换热特性试验研究[J]. 科学技术与工程, 2017, 17(5): 271-275.
Li S B, Li N P, Cui H J, et al. Experimental study on heat transfer characteristics of heat source tower under low temperature and high humidity conditions [J]. Science Technology and Engineering, 2017, 17(5): 271-275.
28 李腾波, 李念平, 张楠. 冬季喷淋工况下闭式热源塔换热性能试验[J]. 暖通空调, 2018, 48(8): 49-55.
Li T B, Li N P, Zhang N. Experiments on heat transfer performances of closed heat tower under winter spray conditions [J]. Heating Ventilating & Air Conditioning, 2018, 48(8): 49-55.
29 李峥嵘, 孙佳利, 张东凯. 结霜工况下闭式热源塔内翅片间距的模拟优化[J]. 建筑热能通风空调, 2017, 36(10): 1-4, 18.
Li Z R, Sun J L, Zhang D K. Simulation and optimization of fin pitch in closed heat source tower under frost condition [J]. Building Energy & Environment, 2017, 36(10): 1-4, 18.
30 夏燚, 孙立镖, 梁彩华, 等. 具有预凝功能的新型热源塔的构建及模拟[J]. 东南大学学报(自然科学版), 2015, 45(6): 1108-1113.
Xia Y, Sun L B, Liang C H, et al. Construction and simulation of new-type heat-source tower with pre-condensation function [J]. Journal of Southeast University (Natural Science Edition), 2015, 45(6): 1108-1113.
31 Liang C H, Wen X T, Liu C X, et al. Performance analysis and experimental study of heat-source tower solution regeneration [J]. Energy Conversion and Management, 2014, 85: 596-602.
32 文先太, 梁彩华, 刘成兴, 等. 基于空气能量回收的热源塔溶液再生系统节能性分析[J]. 化工学报, 2011, 62(11): 3242-3247.
Wen X T, Liang C H, Liu C X, et al. Energy-saving analysis of solution regeneration in heat-source tower based on recovery of air energy [J]. CIESC Journal, 2011, 62(11): 3242-3247.
33 李敏霞, 靳亚楠, 王磊. 热源塔热泵系统冷冻液的测试与选择[J]. 化学工程, 2017, 45(5): 46-50, 78.
Li M X, Jin Y N, Wang L. Testing and choosing of refrigerating fluids in heat pump system of heat-source tower [J]. Chemical Engineering (China), 2017, 45(5): 46-50, 78.
34 陈琦, 李念平, 成剑林, 等. 闭式热源塔换热性能试验研究[J]. 暖通空调, 2015, 45(12): 68-71.
Chen Q, Li N P, Cheng J L, et al. Experimental study on heat transfer performance of closed-type heat source towers [J]. Heating Ventilating & Air Conditioning, 2015, 45(12): 68-71.
35 Song P Y, Xiao H S, Shi W X, et al. Experimental investigation on closed-type heating tower using glycerol solution [J]. International Journal of Refrigeration, 2019, 99: 272-287.
36 Zendehboudi A, Song P Y, Li X T. Performance investigation of the cross-flow closed-type heat-source tower using experiments and an adaptive neuro-fuzzy inference system model [J]. Energy and Buildings, 2019, 183: 340-355.
37 Giannetti N, Rocchetti A, Yamaguchi S, et al. Heat and mass transfer coefficients of falling-film absorption on a partially wetted horizontal tube [J]. International Journal of Thermal Sciences, 2018, 126: 56-66.
38 Rahmah A S, Elsayed M M, Al-Najem N M. A numerical investigation for the heat and mass transfer between parallel flow of air and desiccant falling film in a fin-tube arrangement [J]. HVAC&R Research, 2000, 6(4): 307-323.
39 Ali A, Vafai K, Khaled A R A. Analysis of heat and mass transfer between air and falling film in a cross flow configuration [J]. International Journal of Heat and Mass Transfer, 2004, 47(4): 743-755.
40 王铁军. 喷淋蒸发翅管式冷凝器传热传质研究[J]. 低温与超导, 2006, 34(4): 299-302.
Wang T J. The study on heat and mass transfer of the fin-and-tube condenser with spray evaporating [J]. Cryogenics and Superconductivity, 2006, 34(4): 299-302.
41 刘国兵, 惠宇, 王玉璋. 气液降膜流动传热传质研究的综述[J]. 燃气轮机技术, 2011, 24(3): 13-17, 31.
Liu G B, Hui Y, Wang Y Z. A survey of the heat and mass transfer in the gas-liquid falling film [J]. Gas Turbine Technology, 2011, 24(3): 13-17, 31.
42 Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension [J]. Journal of Computational Physics, 1992, 100(2): 335-354.
43 Woerlee G F, Berends J, Olujic Z, et al. A comprehensive model for the pressure drop in vertical pipes and packed columns [J]. Chemical Engineering Journal, 2001, 84(3): 367-379.
44 Stephan M, Mayinger F. Experimental and analytical study of countercurrent flow limitation in vertical gas/liquid flows [J]. Chemical Engineering & Technology, 1992, 15(1): 51-62.
45 Wallis G B. Annular two-phase flow (Ⅱ): Additional effects [J]. Journal of Basic Engineering, 1970, 92(1): 73-81.
46 Yu Y Q, Cheng X. Three-dimensional simulation on behavior of water film flow with and without shear stress on water-air interface [J]. International Journal of Heat and Mass Transfer, 2014, 79: 561-572.
47 Brauner N, Maron D M. Modeling of wavy flow in inclined thin films [J]. Chemical Engineering Science, 1983, 38(5): 775-788.
48 Nusselt W. Die oberflachenkondensation des wasserdamphes [J]. Zeit. Ver. D. Ing., 1916, 60: 541-569
49 Takahama H, Kato S. Longitudinal flow characteristics of vertically falling liquid films without concurrent gas flow [J]. International Journal of Multiphase Flow, 1980, 6(3): 203-215.
50 Tang Z W, Yan X K, Jiang Z Y. Experimental study on surface wave and film breakdown of falling liquid film flow [J]. Heat and Mass Transfer, 2009, 45(6): 673-677.
51 Karapantsios T D, Paras S V, Karabelas A J. Statistical characteristics of free falling films at high Reynolds numbers [J]. International Journal of Multiphase Flow, 1989, 15(1): 1-21.
52 黄磊, 李明春, 陈冬, 等. 降膜流动及膜破裂特性的三维数值模拟[J]. 能源工程, 2015, (2): 13-20.
Huang L, Li M C, Chen D, et al. 3-D numerical simulation of falling film flow and film break-up characteristic [J]. Energy Engineering, 2015, (2): 13-20.
53 暴凯, 胡珀, 黄兴冠. 可变角度大平板降膜流动特性的试验研究[J]. 核科学与工程, 2015, 35(2): 379-384.
Bao K, Hu P, Huang X G. Experimental study of water film flow characteristics on the rotatable large flat plate [J]. Nuclear Science and Engineering, 2015, 35(2): 379-384.
54 Min J K, Park I S. Numerical study for laminar wavy motions of liquid film flow on vertical wall [J]. International Journal of Heat and Mass Transfer, 2011, 54(15/16): 3256-3266.
55 万智华, 厉彦忠, 陈宏振. 竖直通道内降膜流动数值模拟研究[J]. 制冷学报, 2017, 38(6): 80-86.
Wan Z H, Li Y Z, Chen H Z. Numerical simulation of falling film flow in vertical channel [J]. Journal of Refrigeration, 2017, 38(6): 80-86.
56 Lu H, Lu L, Luo Y M, et al. Investigation on the dynamic characteristics of the counter-current flow for liquid desiccant dehumidification [J]. Energy, 2016, 101: 229-238.
57 Yang L P, Song J J, Zhang L H, et al. Microscopic mechanisms of wave effect on heat transfer enhancement in condensate films [J]. Chemical Engineering Science, 2019, 204: 220-227.
[1] 徐玲玲, 蒲亮. 基于热短路问题的仿生地埋管换热器模拟[J]. 化工学报, 2021, 72(S1): 134-139.
[2] 林恩承, 王文, 匡以武, 石玉美, 耑锐, 孙礼杰. 低温输运管道预冷过程的气液两相数值分析[J]. 化工学报, 2021, 72(S1): 153-160.
[3] 山訸, 马秋鸣, 潘权稳, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器冷却液侧传热与流动性能仿真[J]. 化工学报, 2021, 72(S1): 194-202.
[4] 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209.
[5] 张亚爽, 李洪, 从海峰, 韩红明, 李鑫钢, 高鑫. 微波强化液桥式螺旋降膜蒸发器数值模拟[J]. 化工学报, 2021, 72(S1): 227-235.
[6] 黄锟腾, 陈健勇, 陈颖, 罗向龙, 梁颖宗. 气液分离技术的研究现状[J]. 化工学报, 2021, 72(S1): 30-41.
[7] 海鹏, 李振兴, 李珂, 黄红梅, 郑文帅, 高新强, 戴巍, 沈俊. 多层主动磁回热器的仿真优化[J]. 化工学报, 2021, 72(S1): 302-309.
[8] 王玲玥, 朱进容, 王从乐, 吕辉, 成纯富, 张金业. 圆管束中导流器对其自然对流换热的影响[J]. 化工学报, 2021, 72(S1): 310-317.
[9] 刘献飞, 王恒, 王方, 李志强, 朱彩霞, 张浩飞. 单螺杆膨胀机螺旋槽道内液膜分布均匀特性[J]. 化工学报, 2021, 72(S1): 336-341.
[10] 候召宁, 王林, 闫晓娜, 李修真, 王占伟, 梁坤峰. 多超声振子作用下气泡动力学数值模拟[J]. 化工学报, 2021, 72(S1): 362-370.
[11] 宋粉红, 王伟, 陈奇成, 范晶. 电场作用下双液滴聚合特性[J]. 化工学报, 2021, 72(S1): 371-381.
[12] 赵浚哲, 刘舫辰, 李元鲁, 杜文静. 低Reynolds数下内置三棱柱通道的流动与传热特性[J]. 化工学报, 2021, 72(S1): 382-389.
[13] 陈建业, 丁月, 吴钊, 禹云星, 邵双全. 带涡流管的新型加氢流程数值研究[J]. 化工学报, 2021, 72(S1): 461-466.
[14] 张经伟, 刘永阳, 刘东, 邵国栋, 李元鲁, 刘舫辰, 杜文静. 竖直壁面上含SO2气体的锅炉烟气的低温冷凝特性[J]. 化工学报, 2021, 72(S1): 475-481.
[15] 燕子腾, 吴国明, 庄大伟, 丁国良, 曹法立, 孟建军. 用于微通道换热器的循环流道分流器的设计方法与应用效果[J]. 化工学报, 2021, 72(S1): 77-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李璐, 程江, 文秀芳, 皮丕辉, 杨卓如. 用作活性物载体聚苯乙烯-二乙烯苯多孔交联微球的悬浮聚合制备及表征[J]. CIESC Journal, 2006, 14(4): 471 -477 .
[2] 司徒粤, 胡剑峰, 黄洪, 傅和青, 曾汉维, 陈焕钦. 新型环氧大豆油增韧酚醛树脂的合成与性质[J]. CIESC Journal, 2007, 15(3): 418 -423 .
[3] 王二强, 李成岳. 悬浮床催化精馏合成支链烷基苯的模拟[J]. CIESC Journal, 2003, 11(5): 520 -525 .
[4] 娄文勇, 宗敏华, 范晓丹. 水/有机溶剂双相中固定化啤酒酵母细胞催化三甲基硅乙酮不对称还原[J]. CIESC Journal, 2003, 11(2): 136 -140 .
[5] 刘润静, 陈建峰, 郭奋, 吉米, 沈志刚. 纳米碳酸钙在非等温条件下热分解动力学及机理研究[J]. CIESC Journal, 2003, 11(3): 302 -306 .
[6] 章亚东, 高晓蕾, 陈霞, 王朝进, 蒋登高. 聚苯乙烯负载钼(Ⅵ)配合物的合成、表征及其催化环己烯环氧化活性研究[J]. CIESC Journal, 2003, 11(3): 318 -325 .
[7] 李天成, 姜斌, 冯霞, 王大为, 袁绍军, 李鑫钢. 微电解-生物膜复合工艺净化含重金属离子的有机废水[J]. CIESC Journal, 2003, 11(2): 146 -150 .
[8] 高正明, 施力田. 搅拌槽内温度对气含率的影响[J]. CIESC Journal, 2003, 11(2): 204 -207 .
[9] 罗正鸿, 詹晓力, 陈丰秋, 阳永荣. Mo-Bi系丙烯氨氧化催化剂上氨分解反应动力学的Monte Carlo模拟[J]. CIESC Journal, 2003, 11(1): 110 -114 .
[10] Jan-Christer Janson . 大型蛋白质色谱柱及凝胶介质的综述[J]. CIESC Journal, 2002, 10(6): 690 -695 .