化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 371-381.doi: 10.11949/0438-1157.20201130

• 流体力学与传递现象 • 上一篇    下一篇

电场作用下双液滴聚合特性

宋粉红1(),王伟1,2,陈奇成1,范晶1()   

  1. 1.东北电力大学能源与动力工程学院,吉林省 吉林市 132012
    2.松花江水力发电有限公司吉林丰满发电厂,吉林省 吉林市 132000
  • 收稿日期:2020-08-10 修回日期:2021-01-15 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 范晶 E-mail:fenhongsong@neepu.edu.cn;crystalfan@neepu.edu.cn
  • 作者简介:宋粉红(1983—),女,博士,副教授,fenhongsong@neepu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51606032);吉林省自然科学青年基金项目(20190103065JH);吉林市杰出青年基金项目(20190104133)

Coalescence characteristics of the double droplets under electric field

SONG Fenhong1(),WANG Wei1,2,CHEN Qicheng1,FAN Jing1()   

  1. 1.College of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin, China
    2.Jilin Fengman Power Plant of Songhua River Hydropower Co. Ltd. , Jilin 132012, Jilin, China
  • Received:2020-08-10 Revised:2021-01-15 Published:2021-06-20 Online:2021-06-20
  • Contact: FAN Jing E-mail:fenhongsong@neepu.edu.cn;crystalfan@neepu.edu.cn

摘要:

乳状液破乳分离是目前高含水期油田开采过程中难以解决的技术问题,电场破乳方法具有高效清洁等优点,是解决该问题的有效手段。采用数值模拟与试验验证相结合的方法研究电脱水过程中阶跃、斜坡电场诱导下双液滴的聚合与分离特性。结果表明,在斜坡电场作用下,界面张力引起的泵吸作用大于电场力引起的颈缩作用,有利于液滴聚并,且液滴发生二次乳化现象的概率降低。而施加阶跃电场时,一定范围内能够达到液滴破乳的目的,但液滴在聚并过程中易发生二次乳化现象。从电场对连续相影响的角度分析发现,阶跃电场不仅对液滴具有驱动作用,对连续相的影响也较为明显,阶跃电场会增大连续相内湍流作用,不利于电脱水过程。因此,采用斜坡信号诱导液滴聚合能够降低二次乳化现象发生的概率。

关键词: 液滴, 相场方法, 电脱水, 聚结, 分离, 数值模拟

Abstract:

Demulsification of emulsion is a difficult technical problem to be solved in the process of oilfield production in high water cut period. Electric field demulsification is an effective ways to solve this problem because of its advantages of clean and high efficiency. In this paper, numerical simulation and experimental verification were applied to study the coalescence and separation characteristics of double droplets induced by the step and ramp signal electric field in the process of electric dehydration. The results show that under the action of ramp signal electric field, the pumping suction effect caused by interfacial tension is far greater than the necking effect caused by electric field, which is conducive to the coalescence of droplets, and reduces the probability of secondary emulsification of droplets. While applying the step signal electric field, the demulsification of the droplet can be achieved within a certain range, but the droplet is prone to secondary emulsification during coalescence. From the perspective of the effect of electric field on the continuous phase, it is found that the step signal electric field not only drives the droplet deformation and coalescence, but also has an obvious effect on the continuous phase. The step signal electric field increases the turbulence effect in the continuous phase, which is unfavorable to the electric dehydration process. Therefore, applying ramp signal to induce droplet coalescence could reduce the probability of secondary emulsification in the electric dehydration process.

Key words: droplet, phase field method, electric dehydration, coalescence, separation, numerical simulation

中图分类号: 

  • TQ 028

图1

数值模拟模型"

图2

电场作用下液滴聚并试验系统"

图3

系统施加阶跃信号电压时设置的激励信号"

图4

阶跃信号电场作用下液滴的变形与聚并过程(E=4 kV)"

图5

电场力沿Y方向的分布(E=4 kV)"

图6

两个液滴在水平阶跃电场作用下聚并失败的过程图(E=2 kV)"

图7

阶跃信号作用下液滴间距离随时间的变化(E=2 kV)"

图8

液滴在水平阶跃电场作用下的破乳过程(E=21 kV)"

图9

系统施加斜坡信号电压时设置的激励信号"

图10

双液滴在水平斜坡信号作用下的聚并过程(E=4 kV)"

图11

液滴所受沿Y方向的电场力分布(E=4 kV)"

图12

两液滴在斜坡电场作用下的逐渐靠近过程(E=21 kV)"

图13

液滴在斜坡电场作用下的聚并过程(E=21 kV)"

图14

聚并液滴在斜坡电场持续作用下的后续移动过程(E=21 kV)"

图15

斜坡电场作用下的液滴距离变化曲线(E=21 kV)"

1 袁晴棠. 中国劣质原油加工技术进展与展望[J]. 当代石油石化, 2007, 15(12): 1-6, 49.
Yuan Q T. Technical advances in China's bad crude oil processing and its prospect [J]. Petroleum & Petrochemical Today, 2007, 15(12): 1-6, 49.
2 Eow J S, Ghadiri M, Sharif A O, et al. Electrostatic enhancement of coalescence of water droplets in oil: a review of the current understanding [J]. Chemical Engineering Journal, 2001, 84(3): 173-192.
3 de Gennes P G, Brochard-Wyart F, Quéré D. Capillarity and wetting phenomena: drops, bubbles, pearls, waves [J]. Physics Today, 2004, 57: 66-67.
4 Mohammed R A, Bailey A I, Luckham P F, et al. Dewatering of crude oil emulsions (Ⅲ): Emulsion resolution by chemical means [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 83(3): 261-271.
5 陆耀军, 潘玉琦, 薛敦松. 重力式油水分离设备中影响液滴运动的因素[J]. 油田地面工程, 1993, 12(3): 1-5, 4.
Lu Y J, Pan Y Q, Xue D S. Factors affecting droplet motion in gravity oil-water separation devices [J]. Oilfield Surface Engineering, 1993, 12(3): 1-6.
6 Sun D Z, Chung J S, Duan X D, et al. Demulsification of water-in-oil emulsion by wetting coalescence materials in stirred- and packed-columns [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 150(1/2/3): 69-75.
7 郭子涵, 汪永清, 胡学兵, 等. 热处理温度对氧化石墨烯改性陶瓷膜油水分离性能的影响[J]. 陶瓷学报, 2020, 41(2): 208-212.
Guo Z H, Wang Y Q, Hu X B, et al. Effect of heat treatment temperature on oil-water separation performance of graphene oxide modified ceramic membrane [J]. Journal of Ceramics, 2020, 41(2): 208-212.
8 Kocherginsky N M, Tan C L, Lu W F. Demulsification of water-in-oil emulsions via filtration through a hydrophilic polymer membrane [J]. Journal of Membrane Science, 2003, 220(1/2): 117-128.
9 孙治谦, 金有海, 王磊, 等. 高频脉冲电场参数对水滴极化变形的影响[J]. 化工学报, 2012, 63(10): 3112-3118.
Sun Z Q, Jin Y H, Wang L, et al. Impact of high-frequency pulse electric field parameters on polarization and deformation of water droplet [J]. CIESC Journal, 2012, 63(10): 3112-3118.
10 Goto M, Irie J, Kondo K, et al. Electrical demulsification of W/O emulsion by continuous tubular coalescer [J]. Journal of Chemical Engineering of Japan, 1989, 22(4): 401-406.
11 Less S, Hannisdal A, Bjørklund E, et al. Electrostatic destabilization of water-in-crude oil emulsions: application to a real case and evaluation of the Aibel VIEC technology [J]. Fuel, 2008, 87(12): 2572-2581.
12 Kralova I, Sjöblom J, Øye G, et al. Heavy crude oils/particle stabilized emulsions [J]. Advances in Colloid and Interface Science, 2011, 169(2): 106-127.
13 Eow J S, Ghadiri M. Electrostatic enhancement of coalescence of water droplets in oil: a review of the technology [J]. Chemical Engineering Journal, 2002, 85(2/3): 357-368.
14 Førdedal H, Schildberg Y, Sjöblom J, et al. Crude oil emulsions in high electric fields as studied by dielectric spectroscopy. Influence of interaction between commercial and indigenous surfactants [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 106(1): 33-47.
15 Bailes P J, Larkai S K L. Liquid phase separation in pulsed D. C. fields[J]. Transactions of the Institution of Chemical Engineers, 1982, 60(2):115-121.
16 Less S, Hannisdal A, Sjöblom J. Dehydration efficiency of water-in-crude oil emulsions in alternating current electrical fields [J]. Journal of Dispersion Science and Technology, 2010, 31(3): 265-272.
17 Bailes P J, Larkai S K L. An experimental investigation into the use of high voltage D. C. fields for liquid phase separation [J]. Transactions of the Institution of Chemical Engineers, 1981, 59(4): 229-237.
18 Bailes P J, Larkai S K L. Liquid phase separation in pulsed D. C. fields [J]. Transactions of the Institution of Chemical Engineers, 1982, 60(2): 115-121.
19 李彬, 任瑞娟, 孙治谦, 等. 直流脉冲电场下液滴-界面聚并行为[J]. 化工学报, 2018, 69(2): 815-822.
Li B, Ren R J, Sun Z Q, et al. Drop-interface electrocoalescence under pulsatile electric fields [J]. CIESC Journal, 2018, 69(2): 815-822.
20 樊玉新, 李彬, 孙治谦, 等. 无机盐浓度及种类对电脱水过程水滴极化的影响[J]. 化工学报, 2016, 67(8): 3297-3303.
Fan Y X, Li B, Sun Z Q, et al. Effect of salt concentration and type on polarization and deformation of water droplet during electric dehydration [J]. CIESC Journal, 2016, 67(8): 3297-3303.
21 Bailes P J, Dowling P D. The production of pulsed E. H. T. voltages for electrostatic coalescence [J]. Journal of Electrostatics, 1985, 17(3): 321-328.
22 陈庆国, 宋春辉, 梁雯, 等. 非均匀电场下乳化油中液滴变形动力学行为[J]. 化工学报, 2015, 66(3): 955-964.
Chen Q G, Song C H, Liang W, et al. Kinetics behavior of water droplet deformation in emulsified oil subjected to non-uniform electric field [J]. CIESC Journal, 2015, 66(3): 955-964.
23 张军, 何宏舟. 高压静电破乳中离散液滴的动力学分析[J]. 化工学报, 2013, 64(6): 2050-2057.
Zhang J, He H Z. Dynamics of dispersed droplets in demulsification under high electrical voltage [J]. CIESC Journal, 2013, 64(6): 2050-2057.
24 张军, 何宏舟, 黄冠星. 均匀电场中液滴变形特性的耗散粒子动力学模拟 [J]. 化工学报, 2014, 65(10): 3872-3877.
Zhang J, He H Z, Huang G X. Simulation of droplet deformation in uniform electric field with dissipative particle dynamics approach [J]. CIESC Journal, 2014, 65(10): 3872-3877.
25 Lesaint C, Glomm W R, Lundgaard L E, et al. Dehydration efficiency of AC electrical fields on water-in-model-oil emulsions [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 352(1/2/3): 63-69.
26 Mousavichoubeh M, Shariaty-Niassar M, Ghadiri M. The effect of interfacial tension on secondary drop formation in electro-coalescence of water droplets in oil [J]. Chemical Engineering Science, 2011, 66(21): 5330-5337.
27 Mousavichoubeh M, Ghadiri M, Shariaty-Niassar M. Electro-coalescence of an aqueous droplet at an oil-water interface [J]. Chemical Engineering and Processing: Process Intensification, 2011, 50(3): 338-344.
28 Mousavi S H, Ghadiri M, Buckley M. Electro-coalescence of water drops in oils under pulsatile electric fields [J]. Chemical Engineering Science, 2014, 120: 130-142.
29 梁猛, 李青, 王奎升, 等. 匀强电场作用下分散相液滴的变形和破裂[J]. 化工学报, 2014, 65(3): 843-848.
Liang M, Li Q, Wang K S, et al. Deformation and breakup of dispersed phase droplets in uniform electric field [J]. CIESC Journal, 2014, 65(3): 843-848.
30 梁雯. 不同类型电场下原油乳化液脱水特性研究[D]. 哈尔滨: 哈尔滨理工大学, 2015.
Liang W. Dehydration characteristics of crude oil emulsion under different electric field types [D]. Harbin: Harbin University of Science and Technology, 2015.
31 吕宇玲, 田成坤, 何利民, 等. 电场和剪切场耦合作用下双液滴聚结数值模拟[J]. 石油学报, 2015, 36(2): 238-245.
Lü Y L, Tian C K, He L M, et al. Numerical simulations on the double-droplets coalescence under the coupling effects of electric field and shearing field [J]. Acta Petrolei Sinica, 2015, 36(2): 238-245.
32 Jacqmin D. Calculation of two-phase Navier-Stokes flows using phase-field modeling [J]. Journal of Computational Physics, 1999, 155(1): 96-127.
33 Feng J Q. Electrohydrodynamic behaviour of a drop subjected to a steady uniform electric field at finite electric Reynolds number [J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1999, 455(1986): 2245-2269.
34 Phan C M, Allen B, Peters L B, et al. Can water float on oil? [J]. Langmuir, 2012, 28(10): 4609-4613.
35 Yan H P, He L M, Luo X M, et al. Investigation on transient oscillation of droplet deformation before conical breakup under alternating current electric field [J]. Langmuir, 2015, 31(30): 8275-8283.
[1] 徐玲玲, 蒲亮. 基于热短路问题的仿生地埋管换热器模拟[J]. 化工学报, 2021, 72(S1): 134-139.
[2] 山訸, 马秋鸣, 潘权稳, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器冷却液侧传热与流动性能仿真[J]. 化工学报, 2021, 72(S1): 194-202.
[3] 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209.
[4] 张亚爽, 李洪, 从海峰, 韩红明, 李鑫钢, 高鑫. 微波强化液桥式螺旋降膜蒸发器数值模拟[J]. 化工学报, 2021, 72(S1): 227-235.
[5] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[6] 黄锟腾, 陈健勇, 陈颖, 罗向龙, 梁颖宗. 气液分离技术的研究现状[J]. 化工学报, 2021, 72(S1): 30-41.
[7] 海鹏, 李振兴, 李珂, 黄红梅, 郑文帅, 高新强, 戴巍, 沈俊. 多层主动磁回热器的仿真优化[J]. 化工学报, 2021, 72(S1): 302-309.
[8] 王玲玥, 朱进容, 王从乐, 吕辉, 成纯富, 张金业. 圆管束中导流器对其自然对流换热的影响[J]. 化工学报, 2021, 72(S1): 310-317.
[9] 候召宁, 王林, 闫晓娜, 李修真, 王占伟, 梁坤峰. 多超声振子作用下气泡动力学数值模拟[J]. 化工学报, 2021, 72(S1): 362-370.
[10] 赵浚哲, 刘舫辰, 李元鲁, 杜文静. 低Reynolds数下内置三棱柱通道的流动与传热特性[J]. 化工学报, 2021, 72(S1): 382-389.
[11] 高帅涛, 刘雪珂, 张丽, 刘芬, 余江, 商剑锋, 欧天雄, 周政, 陈平文. Aspen Plus模拟高浓度H2S/CO2酸性气的选择性分离[J]. 化工学报, 2021, 72(S1): 413-420.
[12] 吴中杰, 刘则艳, 谢连科, 崔美, 黄仁亮. 聚偏氟乙烯膜亲水改性及其乳液分离与重金属吸附应用[J]. 化工学报, 2021, 72(S1): 421-429.
[13] 陈建业, 丁月, 吴钊, 禹云星, 邵双全. 带涡流管的新型加氢流程数值研究[J]. 化工学报, 2021, 72(S1): 461-466.
[14] 张牧星, 张小松, 丁烨, 宋翼. 氧化石墨烯膜间距对电渗析空气除湿特性影响的分子动力学研究[J]. 化工学报, 2021, 72(S1): 63-69.
[15] 温怡静, 张博, 陈晓霏, 赵思洋, 周欣, 黄艳, 李忠. 多孔炭吸附剂的乙烯-乙烷选择性反转机制[J]. 化工学报, 2021, 72(9): 4768-4774.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANGLixin,KurichiKumar,A.S.Mujumdar. 干燥室中不同液体的喷雾蒸发对流动、传热、传质性能的影响[J]. CIESC Journal, 2004, 12(6): 737 -743 .
[2] 夏春明, 郑建荣, J.Howell. 基于非负频谱分解的厂级多重振荡源的分离研究[J]. CIESC Journal, 2007, 15(3): 353 -360 .
[3] 曹维良, 王泽, 张敬畅. 影响纳米碳酸钙制备过程的因素分析[J]. CIESC Journal, 2003, 11(5): 589 -593 .
[4] 杨宁, 王维, 葛蔚, 李静海. 垂直并流向上气固两相流中流动结构的分析及曳力系数的计算[J]. CIESC Journal, 2003, 11(1): 79 -84 .
[5] 刘伯潭, 刘春江. 精馏塔板液相流场三维模拟[J]. CIESC Journal, 2002, 10(5): 517 -521 .
[6] 任杰, 刘艳, 唐小真. 聚合物基有机-无机纳米复合材料的制备、性能及应用[J]. CIESC Journal, 2003, 11(3): 326 -333 .
[7] 王成习. 催化精馏塔中乙酸甲酯水解的研究[J]. CIESC Journal, 2001, 9(4): 382 -387 .
[8] 刘春嵘, 郭印诚. 气固并流向上流动中颗粒聚集的机理[J]. CIESC Journal, 2006, 14(2): 141 -148 .
[9] 倪良,韩世钧. 低浓度草酸水溶液的电导研究[J]. CIESC Journal, 2005, 13(1): 81 -84 .
[10] 苏佰丽, 陈增强, 袁著祉. 带约束输入的多变量广义预测解耦控制及其在化工过程中的应用[J]. CIESC Journal, 2006, 14(2): 216 -222 .