化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 421-429.doi: 10.11949/0438-1157.20201315

• 分离工程 • 上一篇    下一篇

聚偏氟乙烯膜亲水改性及其乳液分离与重金属吸附应用

吴中杰1(),刘则艳2,谢连科1,崔美2,黄仁亮2()   

  1. 1.国网山东省电力公司电力科学研究院,山东 济南 250002
    2.天津大学海洋科学与技术学院,天津 300072
  • 收稿日期:2020-09-17 修回日期:2020-10-10 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 黄仁亮 E-mail:414699594@qq.com;tjuhrl@tju.edu.cn
  • 作者简介:吴中杰(1987—),男,博士研究生,414699594@qq.com
  • 基金资助:
    国家电网公司科学技术项目(520626190015);国家自然科学基金项目(21976132)

Preparation of hydrophilic poly(vinylidene fluoride) membrane for oil/water emulsion separation and heavy metal ions adsorption

WU Zhongjie1(),LIU Zeyan2,XIE Lianke1,CUI Mei2,HUANG Renliang2()   

  1. 1.Shandong Electric Power Research Institute of Chinese Power Company, Jinan 250002, Shandong, China
    2.School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
  • Received:2020-09-17 Revised:2020-10-10 Published:2021-06-20 Online:2021-06-20
  • Contact: HUANG Renliang E-mail:414699594@qq.com;tjuhrl@tju.edu.cn

摘要:

聚偏氟乙烯(PVDF)膜因其优异的化学和力学稳定性而被广泛应用于水处理领域,但PVDF膜本身的疏水性,容易使其在处理含油废水的过程中被油滴污染,造成膜孔堵塞。以PVDF微滤膜为基底,通过单宁酸(TA)和聚乙烯亚胺(PEI)共沉积形成了TA/PEI黏附层,经戊二醛共价交联和接枝半胱氨酸(Cys),制备了一种PVDF改性膜(PVDF@TA/PEI-Cys)。改性后的PVDF膜具有良好的亲水性和水下超疏油性,水接触角和水下油接触角分别为22.2°和150.2°。在0.09 MPa下,PVDF@TA/PEI-Cys膜的纯水通量达6328 L/(m2·h),水包油型乳液分离效率高达99.9%。此外,该改性膜还可同时吸附水中的汞离子,最大吸附量为24.7 mg/g。

关键词: 膜分离, 重金属, 吸附, 乳液, 亲水性

Abstract:

Polyvinylidene fluoride (PVDF) membrane is widely used in the field of wastewater treatment due to its excellent chemical and mechanical stability. However, the hydrophobicity of the PVDF membrane makes it easy to be contaminated by oil droplets during the treatment of oily wastewater, which causes the pores of the membrane to be blocked and the decrease in permeation flux. In this study, we developed an approach for preparing a hydrophilic PVDF membrane. Specially, the co-deposition of tannic acid (TA) and polyethyleneimine (PEI) on the PVDF membrane was conducted for the formation of TA/PEI adhesive layer, which was covalently grafted with cysteine via glutaraldehyde to fabricate a modified PVDF membrane (PVDF@TA/PEI-Cys). The PVDF@TA/PEI-Cys membrane has good hydrophilicity and underwater superoleophobicity. The water contact angle and underwater oil contact angle were 22.2° and 150.2°, respectively. The pure water flux of the PVDF@TA/PEI-Cys membrane reached 6328 L/(m2·h) under 0.09 MPa and the separation efficiency of the oil-in-water emulsions was as high as 99.9%. In addition, the modified PVDF membrane can also be used for the adsorption of mercury ions with the maximum adsorption capacity of 24.7 mg/g.

Key words: membrane separation, heavy metal ions, adsorption, emulsion, hydrophilicity

中图分类号: 

  • TQ 028.8

图1

不同PVDF膜表面形貌"

图2

不同改性PVDF膜的XPS谱图(a)和PVDF@TA/PEI-Cys膜S 2p的XPS谱图(b)"

图3

不同PVDF膜的水接触角及其随时间的变化"

图4

不同PVDF膜的纯水通量"

图5

不同PVDF膜的水下油接触角"

图6

不同水包油乳液(SDS稳定)的通量和油截留率(a);不同表面活性剂稳定的水包柴油乳液的通量和油截留率(b);柴油/SDS/水乳液分离前后的照片和光学显微镜图像(c)"

图7

不同水包油乳液的通量恢复率"

图8

重复过滤水包柴油乳液的通量变化"

图9

Hg2+浓度随吸附时间的变化(a); Hg2+浓度随吸附时间变化的拟二级动力学拟合曲线(b)"

表1

Hg2+吸附的拟二级动力学模型参数"

Ionqe(exp)/(mg/g)Pseudo-second-order kinetic
qe/(mg/g)K2/(g/(mg·min))R2
Hg2+15.915.820.0040.9994

图10

不同初始Hg2+浓度下膜的吸附量(a);Langmuir等温吸附模型拟合曲线(b)"

表2

Hg2+吸附的Langmuir模型参数"

Ionqe(exp)/(mg/g)Langmuir model
qm/(mg/g)KL/(L/mg)R2
Hg2+24.725.96120.90.9913

表3

不同膜材料对重金属离子的吸附量比较"

MembraneIonCapacity/(mg/g)Ref.
PVDF@TA/PEI-CysHg2+24.7this work
Zr(Ⅳ)-PVDFAs5+21.5[17]
PES/FMBOAs3+73.5[18]
PVDF-PAA-MEAHg2+55.0[19]
PC/HMOCu2+29.6[20]
PSf/GOCu2+68.3[21]
PSf/HFOPb2+13.2[22]
PSf/NFOCd2+23.8[23]
PVA-PVDFPb2+121.2[24]
1 Shi H, He Y, Pan Y, et al. A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation [J]. Journal of Membrane Science, 2016, 506: 60-70.
2 Zhang N, Qi Y F, Zhang Y N, et al. A review on oil/water mixture separation material [J]. Industrial & Engineering Chemistry Research, 2020, 59(33): 14546-14568.
3 Lu D W, Zhang T, Gutierrez L, et al. Influence of surface properties of filtration-layer metal oxide on ceramic membrane fouling during ultrafiltration of oil/water emulsion [J]. Environmental Science & Technology, 2016, 50(9): 4668-4674.
4 Zhu Y Z, Zhang F, Wang D, et al. A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency [J]. Journal of Materials Chemistry A, 2013, 1(18): 5758.
5 Zhang G F, Gao F, Zhang Q H, et al. Enhanced oil-fouling resistance of poly(ether sulfone) membranes by incorporation of novel amphiphilic zwitterionic copolymers [J]. RSC Advances, 2016, 6(9): 7532-7543.
6 Luo C D, Liu Q X. Oxidant-induced high-efficient mussel-inspired modification on PVDF membrane with superhydrophilicity and underwater superoleophobicity characteristics for oil/water separation [J]. ACS Applied Materials & Interfaces, 2017, 9(9): 8297-8307.
7 Wu W M, Huang R L, Qi W, et al. Bioinspired peptide-coated superhydrophilic poly(vinylidene fluoride) membrane for oil/water emulsion separation [J]. Langmuir, 2018, 34(22): 6621-6627.
8 尚茜子, 张宝泉, 李雲. 不锈钢网负载Al-β分子筛涂层的制备及其在油水分离中的应用[J]. 化工学报, 2019, 70(10): 3994-4001.
Shang X Z, Zhang B Q, Li Y. Fabrication of stainless steel mesh supported zeolite Al-β coatings for oil/water separation [J]. CIESC Journal, 2019, 70(10): 3994-4001.
9 Ma W J, Li Y S, Gao S T, et al. Self-healing and superwettable nanofibrous membranes with excellent stability toward multifunctional applications in water purification [J]. ACS Applied Materials & Interfaces, 2020, 12(20): 23644-23654.
10 Wang W, Han N, Yang C, et al. Fabrication of P(AN-MA)/rGO-g-PAO superhydrophilic nanofiber membrane for removal of heavy metal ions [J]. Journal of Nanoscience and Nanotechnology, 2020, 20(3): 1685-1696.
11 Shi M B, Lin D W, Huang R L, et al. Construction of a mercapto-functionalized Zr-MOF/melamine sponge composite for the efficient removal of oils and heavy metal ions from water [J]. Industrial & Engineering Chemistry Research, 2020, 59(29): 13220-13227.
12 Chen H, Wu H, Wang Q W, et al. Separation performance of Hg2+ in desulfurization wastewater by the graphene oxide polyethersulfone membrane [J]. Energy & Fuels, 2019, 33(9): 9241-9248.
13 Song Y, Li Z L, Zhang J B, et al. A low-cost biomimetic heterostructured multilayer membrane with geopolymer microparticles for broad-spectrum water purification [J]. ACS Applied Materials & Interfaces, 2020, 12(10): 12133-12142.
14 Chen X, He Y, Fan Y, et al. Nature-inspired polyphenol chemistry to fabricate halloysite nanotubes decorated PVDF membrane for the removal of wastewater [J]. Separation and Purification Technology, 2019, 212: 326-336.
15 Xu S J, Wang Z Y, Li S X, et al. Fabrication of polyimide-based hollow fiber membrane by synergetic covalent-crosslinking strategy for organic solvent nanofiltration (OSN) application [J]. Separation and Purification Technology, 2020, 241: 116751.
16 Urban N R, Ernst K, Bernasconi S. Addition of sulfur to organic matter during early diagenesis of lake sediments [J]. Geochimica et Cosmochimica Acta, 1999, 63(6): 837-853.
17 Zheng Y M, Zou S W, Nanayakkara K G N, et al. Adsorptive removal of arsenic from aqueous solution by a PVDF/zirconia blend flat sheet membrane [J]. Journal of Membrane Science, 2011, 374(1/2): 1-11.
18 Gohari R J, Lau W J, Matsuura T, et al. Fabrication and characterization of novel PES/Fe-Mn binary oxide UF mixed matrix membrane for adsorptive removal of As(Ⅲ) from contaminated water solution [J]. Separation and Purification Technology, 2013, 118: 64-72.
19 Hernández S, Islam M S, Thompson S, et al. Thiol-functionalized membranes for mercury capture from water [J]. Industrial & Engineering Chemistry Research, 2020, 59(12): 5287-5295.
20 Delavar M, Bakeri G, Hosseini M. Fabrication of polycarbonate mixed matrix membranes containing hydrous manganese oxide and alumina nanoparticles for heavy metal decontamination: characterization and comparative study [J]. Chemical Engineering Research and Design, 2017, 120: 240-253.
21 Mukherjee R, Bhunia P, De S. Impact of graphene oxide on removal of heavy metals using mixed matrix membrane [J]. Chemical Engineering Journal, 2016, 292: 284-297.
22 Abdullah N, Gohari R J, Yusof N, et al. Polysulfone/hydrous ferric oxide ultrafiltration mixed matrix membrane: preparation, characterization and its adsorptive removal of lead (Ⅱ) from aqueous solution [J]. Chemical Engineering Journal, 2016, 289: 28-37.
23 Mondal M, Dutta M, De S. A novel ultrafiltration grade nickel iron oxide doped hollow fiber mixed matrix membrane: spinning, characterization and application in heavy metal removal [J]. Separation and Purification Technology, 2017, 188: 155-166.
24 Zhao D D, Yu Y, Chen J P. Treatment of lead contaminated water by a PVDF membrane that is modified by zirconium, phosphate and PVA [J]. Water Research, 2016, 101: 564-573.
[1] 林石泉, 赵雅鑫, 吕中原, 赖展程, 胡海涛. 亲疏水性对泡沫金属池沸腾换热特性的影响[J]. 化工学报, 2021, 72(S1): 295-301.
[2] 吴俊晔, 葛天舒, 吴宣楠, 代彦军, 王如竹. 基于吸附剂/木浆纤维纸耦合材料的空气净化[J]. 化工学报, 2021, 72(S1): 520-529.
[3] 罗伟莉, 王雯雯, 潘权稳, 葛天舒, 王如竹. 基于活性碳纤维毡复合吸附剂的储热性能[J]. 化工学报, 2021, 72(S1): 554-559.
[4] 王燕鸿, 姚凯, 郎雪梅, 樊栓狮. 高含水油包水乳液的水合物储气性能研究[J]. 化工学报, 2021, 72(9): 4872-4880.
[5] 马生贵, 田博文, 周雨薇, 陈琳, 江霞, 高涛. 氮掺杂Stone-Wales缺陷石墨烯吸附H2S的密度泛函理论研究[J]. 化工学报, 2021, 72(9): 4496-4503.
[6] 王伟, 钱伟鑫, 马宏方, 应卫勇, 张海涛. 吡啶修饰H-MOR上二甲醚羰基化吸附-扩散理论研究[J]. 化工学报, 2021, 72(9): 4786-4795.
[7] 李媛, 张飞飞, 王丽, 杨江峰, 李立博, 李晋平. MIL-101Cr-F/Cl用于N2O的捕集研究[J]. 化工学报, 2021, 72(9): 4759-4767.
[8] 温怡静, 张博, 陈晓霏, 赵思洋, 周欣, 黄艳, 李忠. 多孔炭吸附剂的乙烯-乙烷选择性反转机制[J]. 化工学报, 2021, 72(9): 4768-4774.
[9] 演康, 杨颂, 刘守军, 杨超, 樊惠玲, 上官炬. 低阶煤原位制备ZnO基活性炭脱硫剂[J]. 化工学报, 2021, 72(9): 4921-4930.
[10] 彭蕾, 姜岩, 夏如馨. 微生物修复Cr(Ⅵ)污染作用机制及研究进展[J]. 化工学报, 2021, 72(9): 4458-4468.
[11] 戴琼斌, 刘宏斌, 夏启斌, 周欣, 李忠. 一种新的颗粒炭材料的制备及其高效分离甲烷氮气性能[J]. 化工学报, 2021, 72(8): 4196-4203.
[12] 冯宇, 张鑫, 张曼, 王建成, 阎智锋, 李甫, 费鹏飞, 卢建军, 米杰. 静电纺丝纤维对煤基气体污染物脱除研究进展[J]. 化工学报, 2021, 72(8): 3933-3945.
[13] 邓超和, 王佳韵, 李金凤, 刘业凤, 王如竹. 可低温驱动的凝胶复合吸附剂的制备及吸/脱附性能研究[J]. 化工学报, 2021, 72(8): 4401-4409.
[14] 王绍宇, 马翰泽, 吴洪, 梁旭, 王洪建, 朱姿亭, 姜忠义. 有机框架膜在气体分离中的研究进展[J]. 化工学报, 2021, 72(7): 3488-3510.
[15] 韩笑,陈雨亭,苏宝根,鲍宗必,张治国,杨亦文,任其龙,杨启炜. 己烷异构体吸附分离材料研究进展[J]. 化工学报, 2021, 72(7): 3445-3465.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王微微. 油气两相流空隙率测量[J]. CIESC Journal, 2007, 15(3): 339 -344 .
[2] 姬忠礼, 彭书, 谭立村. 陶瓷过滤器脉冲反吹系统的流场的数值模拟[J]. CIESC Journal, 2003, 11(6): 626 -632 .
[3] 董朝霞, 李明远, 吴肇亮, 林梅钦. 交联聚合物线团的变形能力研究[J]. CIESC Journal, 2003, 11(6): 686 -690 .
[4] 费维扬, 孙兰义, 郭庆丰. 新一代的乱堆填料——梅花扁环[J]. CIESC Journal, 2002, 10(6): 631 -634 .
[5] 尤学一, H.J.Bart. 搅拌萃取塔内单相流动不同雷诺平均湍流模型结果的比较[J]. CIESC Journal, 2003, 11(3): 362 -366 .
[6] HunYong SHIN, Hwayong KIM, Ki-Pung YOO, ChulSoo LEE, Yoshio IWAI, Yasuhiko ARAI. EOS状态下基于多相流有规栅格理论的水-碳氢化合物两相体系的临界轨迹关系[J]. CIESC Journal, 2002, 10(6): 661 -665 .
[7] 谢方友, 朱明乔, 刘建青, 何潮洪. 在脉冲填料柱中萃取硫酸铵溶液中的己内酰胺[J]. CIESC Journal, 2002, 10(6): 677 -680 .
[8] 沙勇, 成弘, 于艺红. 伴有Rayleigh对流的气液吸收过程数值模拟[J]. CIESC Journal, 2002, 10(5): 539 -544 .
[9] 李天文, 毛在砂, 陈家镛, 费维扬. 萃取体系滴内和两相阻力控制的单液滴传质实验和数值模拟研究[J]. CIESC Journal, 2002, 10(1): 1 -14 .
[10] 吴绵斌, 夏黎明, 岑沛霖. 应用固定化里氏木霉在螺旋纤维床生物反应器中连续降解壳聚糖的研究[J]. CIESC Journal, 2002, 10(1): 84 -88 .