化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 91-97.doi: 10.11949/0438-1157.20201490

• 流体力学与传递现象 • 上一篇    下一篇

微通道换热器百叶窗翅片排水性能的CFD模拟

刘璐(),丁国良(),庄大伟,杨艺菲,杜心远   

  1. 上海交通大学机械与动力工程学院,上海 200240
  • 收稿日期:2020-10-28 修回日期:2021-01-15 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 丁国良 E-mail:ll631461014@sjtu.edu.cn;glding@sjtu.edu.cn
  • 作者简介:刘璐(1997—),女,硕士研究生,ll631461014@sjtu.edu.cn

CFD simulation of water drainage performance of louver-typed microchannel heat exchanger

LIU Lu(),DING Guoliang(),ZHUANG Dawei,YANG Yifei,DU Xinyuan   

  1. Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2020-10-28 Revised:2021-01-15 Published:2021-06-20 Online:2021-06-20
  • Contact: DING Guoliang E-mail:ll631461014@sjtu.edu.cn;glding@sjtu.edu.cn

摘要:

微通道换热器结构紧凑、换热效率高,但应用于热泵空调器时,会出现排水困难从而造成性能恶化的问题。插片式微通道换热器通过在翅片上增加专门的排水槽结构,能够有效提升微通道换热器的排水性能。本文采用百叶窗型插片式微通道换热器的双翅片扁管结构作为几何建模对象,利用液滴接触角模型与表面张力模型来确定排水过程中液滴在翅片表面的运动过程,建立排水预测模型,并通过试验验证模型准确性。通过对不同开缝角度和开缝数量的百叶窗翅片排水性能进行模拟,发现翅片上残留水量与开缝角度没有明显的单调关系;翅片上残留水量随着开缝数量增加而增加;当开缝数量由5个增加到14个时,残留水量增大了31.89%。

关键词: 插片式微通道换热器, 排水模型, 开缝角度, 开缝数量

Abstract:

Microchannel heat exchangers (MCHXs) have the advantages of compact structure and high heat transfer efficiency. However, the performance of MCHXs may deteriorate due to the difficulty in defrosting water drainage when MCHXs are applied to heat pump air conditioners. The louver fins used in inserted microchannel heat exchanger add a special structure of drainage channel, which can improve the drainage performance of microchannel heat exchanger. In this paper, the structure of tubes with two-row fins is selected as the modelling object. The contact angle model of water droplets and the surface tension model are developed to predict the movement characteristic of water on the fin surface, and the proposed model is validated by the experiments. The simulation results show that, the effect of louver angle of the fins on the mass of retaining water is not obvious; the mass of retaining water increases with the increase of the louver number of the fins, and the water retention mass increases up to 31.89% as the louver number increases from 5 to 14.

Key words: inserted microchannel heat exchanger, water drainage model, louver angle, louver number

中图分类号: 

  • TK 124

图1

微通道换热器结构对比"

图2

插片式微通道换热器结构"

图3

计算区域划分"

图4

网格独立性验证结果"

图5

排水试验台实物"

图6

百叶窗型插片式微通道换热器翅片结构"

图7

试验与模拟结果对比"

图8

翅片扁管结构"

图9

微通道换热器单元水相分布云图"

图10

开缝角度对残留水质量的影响"

图11

开缝数量对残留水质量的影响"

1 葛洋, 姜未汀. 微通道换热器的研究及应用现状[J]. 化工进展, 2016, 35(S1): 10-15.
Ge Y, Jiang W T. The research progress and application of the micro-channel heat exchanger [J]. Chemical Industry and Engineering Progress, 2016, 35(S1): 10-15.
2 尤文焘, 郁林枫. 浅谈微通道换热器[J]. 中国石油和化工标准与质量, 2019, 39(1): 141, 143.
You W T, Yu L F. Brief discussion on microchannel heat exchanger [J]. China Petroleum and Chemical Standard and Quality, 2019, 39(1): 141, 143.
3 Tang J C, Gong G C, Su H, et al. Performance evaluation of a novel method of frost prevention and retardation for air source heat pumps using the orthogonal experiment design method [J]. Applied Energy, 2016, 169: 696-708.
4 刘纳, 李俊明, 李红旗. 采用微通道换热器的热泵型空调器性能研究[J]. 制冷与空调, 2011, 11(4): 96-99, 64.
Liu N, Li J M, Li H Q. Performance research on heat pump air conditioner using micro-channel heat exchangers [J]. Refrigeration and Air-Conditioning, 2011, 11(4): 96-99, 64.
5 Vaisi A, Esmaeilpour M, Taherian H. Experimental investigation of geometry effects on the performance of a compact louvered heat exchanger [J]. Applied Thermal Engineering, 2011, 31(16): 3337-3346.
6 Korte C, Jacobi A M. Condensate retention effects on the performance of plain-fin-and-tube heat exchangers: retention data and modeling [J]. Journal of Heat Transfer, 2001, 123(5): 926-936.
7 Jhee S, Lee K S, Kim W S. Effect of surface treatments on the frosting/defrosting behavior of a fin-tube heat exchanger [J]. International Journal of Refrigeration, 2002, 25(8): 1047-1053.
8 Oliet C, Pérez-Segarra C D, Danov S, et al. Numerical simulation of dehumidifying fin-and-tube heat exchangers: semi-analytical modelling and experimental comparison [J]. International Journal of Refrigeration, 2007, 30(7): 1266-1277.
9 Sommers A D, Yu R, Okamoto N C, et al. Condensate drainage performance of a plain fin-and-tube heat exchanger constructed from anisotropic micro-grooved fins [J]. International Journal of Refrigeration, 2012, 35(6): 1766-1778.
10 徐象国, 詹思成, 梁灏彬, 等. 空调换热器表面排水性能计算模型、整体影响及改进方法综述[J]. 机械工程学报, 2017, 53(4): 122-133.
Xu X G, Zhan S C, Liang H B, et al. Review of methods to simulate and improve the surface wettability of heat exchanger and corresponding influence on air conditioning systems [J]. Journal of Mechanical Engineering, 2017, 53(4): 122-133.
11 Osada H, Aoki H, Ohara T, et al. Research on corrugated multi-louvered fins under dehumidification [J]. Heat Transfer — Asian Research, 2001, 30(5): 383-393.
12 Zhang P, Hrnjak P S. Air-side performance of a parallel-flow parallel-fin (PF2) heat exchanger in sequential frosting [J]. International Journal of Refrigeration, 2010, 33(6): 1118-1128.
13 Park J S, Kim J, Lee K S. Thermal and drainage performance of a louvered fin heat exchanger according to heat exchanger inclination angle under frosting and defrosting conditions [J]. International Journal of Heat and Mass Transfer, 2017, 108: 1335-1339.
14 刘鹿鸣, 施骏业, 王颖, 等. 表面处理对微通道换热器湿工况性能及长效特性的影响[J]. 制冷学报, 2014, 35(4): 53-57.
Liu L M, Shi J Y, Wang Y, et al. Research on the wet performance and long-term characteristics of microchannel heat exchanger with surface coating [J]. Journal of Refrigeration, 2014, 35(4): 53-57.
15 Xu B, Han Q, Chen J P, et al. Experimental investigation of frost and defrost performance of microchannel heat exchangers for heat pump systems [J]. Applied Energy, 2013, 103: 180-188.
16 陈文勇. 用TRIZ理论解决微通道换热器除霜排水问题[J]. 制冷与空调, 2014, 14(10): 5-10, 37.
Chen W Y. Solving MCHE's water drainage issue during defrosting using TRIZ theory [J]. Refrigeration and Air-Conditioning, 2014, 14(10): 5-10, 37.
17 Sheng W, Li X L, Wang R R, et al. Condensate drainage on slit or louvered fins in microchannel heat exchangers for anti-frosting [J]. Energy and Buildings, 2020, 223: 110215.
18 庄大伟. 析湿工况下换热器翅片表面冷凝液滴行为的数值模拟与试验验证[D]. 上海: 上海交通大学, 2015.
Zhuang D W. Simulation and experimental validation of condensing droplet behaviors on fin surfaces in heat exchangers under wet conditions [D]. Shanghai: Shanghai Jiao Tong University, 2015.
19 ElSherbini A I, Jacobi A M. Liquid drops on vertical and inclined surfaces (I): An experimental study of drop geometry [J]. Journal of Colloid and Interface Science, 2004, 273(2): 556-565.
20 ElSherbini A I, Jacobi A M. Liquid drops on vertical and inclined surfaces (II): A method for approximating drop shapes [J]. Journal of Colloid and Interface Science, 2004, 273(2): 566-575.
[1] 黄瑞涛, 春江, 张峥, 李启凡, 温荣福, 马学虎. 微纳复合表面HFE-7100/水的BRT现象及沸腾传热特性[J]. 化工学报, 2021, 72(11): 5510-5519.
[2] 刘腾庆, 闫文韬, 杨鑫, 汪双凤. 强化平板热管传热性能的研究进展[J]. 化工学报, 2021, 72(11): 5468-5480.
[3] 刘志刚,董开明,吕明明,季璨,江亚柯. 基于微观粒子图像测速法的微肋阵通道内流场特性研究[J]. 化工学报, 2021, 72(10): 5094-5101.
[4] 赵雅鑫,赖展程,胡海涛. R1234ze(E)在泡沫金属管内的流动沸腾换热和压降特性[J]. 化工学报, 2021, 72(10): 5074-5081.
[5] 黄承志,汤海波,顾恬,赵玉刚. 热敏荧光法用于蒸发液滴近接触线的温度测量[J]. 化工学报, 2021, 72(10): 5142-5149.
[6] 张浩, 王姣, 马挺, 李馨怡, 刘军, 王秋旺. 超重条件下泡沫石墨-石蜡相变传热实验研究[J]. 化工学报, 2021, 72(9): 4523-4530.
[7] 刘辰玥, 郑通, 刘渊博, 温荣福, 陈凯, 马学虎. 异形仿生换热器壳侧对流换热的高效低阻特性研究[J]. 化工学报, 2021, 72(9): 4511-4522.
[8] 颜建国, 郑书闽, 郭鹏程, 张博, 毛振凯. 基于GA-BP神经网络的超临界CO2传热特性预测研究[J]. 化工学报, 2021, 72(9): 4649-4657.
[9] 孟璐璐, 谢添玺, 陈志豪, 宇高義郎. 材料交错分布型传热板表面异态干涉沸腾传热特性研究[J]. 化工学报, 2021, 72(9): 4564-4572.
[10] 曹海亮, 张红飞, 左潜龙, 安琪, 张子阳, 刘红贝. 梯形微槽道表面池沸腾换热性能研究[J]. 化工学报, 2021, 72(8): 4111-4120.
[11] 李琪, 张容铭, 胡鹏飞. LTNE条件下界面对流传热系数对部分填充多孔介质通道传热特性的影响[J]. 化工学报, 2021, 72(8): 4121-4133.
[12] 姜洪鹏, 白敏丽, 高栋栋, 高林松, 吕继组. 超疏水/亲水性结构表面流动沸腾传热实验研究[J]. 化工学报, 2021, 72(8): 4093-4103.
[13] 林伟翔, 苏港川, 陈强, 文键, 王斯民. 基于超声技术的沉浸式换热器强化传热研究[J]. 化工学报, 2021, 72(8): 4055-4063.
[14] 李凡, 陆高锋, 马光柏, 翟晓强, 杨顺法. 纵向涡强化圆管内换热的数值模拟及性能分析[J]. 化工学报, 2021, 72(S1): 120-126.
[15] 林恩承, 王文, 匡以武, 石玉美, 耑锐, 孙礼杰. 低温输运管道预冷过程的气液两相数值分析[J]. 化工学报, 2021, 72(S1): 153-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张宇,周力行,魏小林,盛宏至. 进口甲烷再燃烧对煤粉燃烧以及NOx生成影响的数值模拟[J]. CIESC Journal, 2005, 13(3): 318 -323 .
[2] 吴燕翔, 王碧玉. 恒压过滤介质阻力分析[J]. CIESC Journal, 2004, 12(1): 33 -36 .
[3] 唐致远, 冯季军, 彭亚宁. 采用不同锰源合成尖晶石LiMn2O4正极材料[J]. CIESC Journal, 2004, 12(1): 124 -127 .
[4] 秦炜, 李振宇, 汪敏, 戴猷元. 三烷基胺萃取氨基磺酸及其废水的特性研究[J]. CIESC Journal, 2004, 12(1): 137 -142 .
[5] 罗艳托, 朱建华, 陈光进. 鼓泡塔中水合物法分离混合气体的数值模拟[J]. CIESC Journal, 2007, 15(3): 345 -352 .
[6] 王斐, 汪文川, 黄世萍, 滕加伟, 谢在库. 正丁烷及丁烯-1在不同硅铝比ZSM-5分子筛上吸附的实验与模型[J]. CIESC Journal, 2007, 15(3): 376 -386 .
[7] 潘海华, 李啸风, 李浩然, 刘迪霞, 韩世钧. 双亲分子在油水界面的行为研究[J]. CIESC Journal, 2003, 11(4): 446 -451 .
[8] 刘磊, 孙贺东, 胡志华, 周芳德. 水平管气液两相弹状流液弹频率的水动力学新模型[J]. CIESC Journal, 2003, 11(5): 508 -514 .
[9] 张治山, 赵文, 王艳丽, 周传光, 袁希钢. 基于瞬时目标函数曲线特性的反应器网络综合[J]. CIESC Journal, 2003, 11(4): 436 -440 .
[10] 佟晓冬, 杨征, 董晓燕, 孙彦. 利用膨胀床吸附技术单步纯化分子伴侣—GroEL[J]. CIESC Journal, 2003, 11(4): 460 -463 .