化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 326-335.doi: 10.11949/0438-1157.20201551

• 流体力学与传递现象 • 上一篇    下一篇

基于余热回收的电动客车喷射补气热泵的制热性能

顾潇1,2(),邹慧明2(),韩欣欣3,唐明生2,田长青2   

  1. 1.上海海事大学商船学院,上海 201306
    2.中国科学院空间功热转换技术重点实验室,中国科学院理化技术研究所,北京 100190
    3.河南理工大学,河南 焦作 454000
  • 收稿日期:2020-11-02 修回日期:2021-01-22 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 邹慧明 E-mail:ajgxdtc95@126.com;zouhuiming@mail.ipc.ac.cn
  • 作者简介:顾潇(1995—),男,硕士研究生,ajgxdtc95@126.com
  • 基金资助:
    国家重点研发计划项目(2018YFB0105900);国家自然科学基金项目(51676201)

Heating performance of vapor injection heat pump based on waste heat recovery

GU Xiao1,2(),ZOU Huiming2(),HAN Xinxin3,TANG Mingsheng2,TIAN Changqing2   

  1. 1.Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China
    2.Key Laboratory of Science and Technology on Space Energy Conversion, Technical Institute of Physics and Chemistry, CAS, Beijing 100190, China
    3.Henan Polytechnic University, Jiaozuo 454000, Henan, China
  • Received:2020-11-02 Revised:2021-01-22 Published:2021-06-20 Online:2021-06-20
  • Contact: ZOU Huiming E-mail:ajgxdtc95@126.com;zouhuiming@mail.ipc.ac.cn

摘要:

根据电动汽车热泵在低温下的制热需求并延长车辆行驶里程,开发了车外换热器支路和余热换热器支路并联的余热回收系统并进行了制热性能试验研究。试验结果显示,对于并联余热回收支路的喷射补气式热泵系统,补气支路压力和补气流量均随着余热量的增加而有明显的提升,而吸气主路流量受余热换热器出口过热度的影响。车外换热器支路和余热换热器支路的流量比也呈线性关系,流量比斜率与余热换热器出口相态有关。并联余热回收喷射补气热泵系统的制热性能随余热量的变化受压缩机吸气量和补气量这两个因素的共同影响。在7℃相对较高的环境工况下,余热量的增加有利于制热量的提升但COP没有优势;在-20℃较低的环境工况下,余热量的增加使得补气流量增长较大,但吸气流量衰减严重,对系统的制热性能提升不明显;在-10~0℃的环境工况下,制热量和COP都随余热量的增加而提升较大,-10℃时,1.8 kW余热量条件下的制热量比0.9 kW余热量条件下的制热量增加了11.6%,COP提升9.18%。

关键词: 热力学过程, 传热, 回收, 电动客车, 并联系统, 喷射补气

Abstract:

According to the heating requirements of electric vehicles (EVs) heat pumps in low ambient temperatures and extending the mileage of EVs, a waste heat recovery system in which the heat exchanger branch outside the vehicle and the branch of the waste heat exchanger are connected in parallel was developed and an experimental study on the heating performance was conducted. The experimental results show that, for the vapor injection heat pump system with parallel waste heat recovery branches, the pressure and mass flow of the vapor injection branch are significantly increased with the increase of the waste heat, while the mass flow of the main-branch is affected by the superheat at the outlet of the waste heat exchanger. The flow ratio of the out-door heat exchanger and the waste heat exchanger has a linear relationship, and the slope of the flow ratio is related to the outlet phase state of the waste heat exchanger. Under the relatively high ambient working conditions of 7℃, the increase of waste heat is beneficial to the increase of heating performance, but COP has no advantage; under the lower ambient working conditions of -20℃, the increase of waste heat increases the flow of injection mass large, but the suction mass flow is seriously attenuated, and the heating performance of the system is not significantly improved; under ambient working conditions of about -10—0℃, the heating performance and COP are greatly increased with the increase of waste heat, at -10℃, the heating performance with 1.8 kW waste heat increased by 11.6% compared to that with 0.9 kW waste heat, and the COP increased by 9.18%.

Key words: thermodynamics process, heat transfer, recovery, electric vehicle, parallel system, vapor injection

中图分类号: 

  • U 469.72

图1

车外换热器支路和余热换热器支路并联的余热回收热泵系统"

表1

不同运行模式下余热回收热泵系统中阀门的启闭状态"

运行模式无余热回收的 基本喷射补气带余热回收的 补气并联无余热回收的 单级压缩带余热回收的 不补气并联单级压缩制冷带电池散热的 单级压缩制冷
四通阀制热制热制热制热制冷制冷
EEV1
EEV2
EEV3
V1
V2
V3
V4
V5

表2

喷射补气热泵机组主要部件参数"

名称主要参数
压缩机R410a变频涡旋压缩机,排量80 cm3/r,频率30~90 Hz
车内换热器车内换热器共两组,每组尺寸为1300 mm×200 mm×154 mm
车外换热器车外换热器共一组,尺寸为1400 mm×840 mm×109 mm
中间换热器中间换热器共两组,选用板式换热器,每组尺寸165 mm ×80 mm×80 mm
余热换热器余热换热器共两组,选用板式换热器,每组尺寸153 mm ×75 mm×75 mm
主路电子膨胀阀阀口径3.2 mm
补气支路电子膨胀阀阀口径2.2 mm
水泵流量25 L/min,扬程8 m,转速2900 r/min

图2

余热回收热泵机组及试验装置"

表3

焓差实验室误差分析"

测量参数控制范围控制精度测量参数控制范围控制精度
环境室温度/℃-40~55±0.1℃环境室湿度20%~90%±0.1℃(WB)
最大制热量/kW30±1.5%最大风量/(m3/h)12000±1%
温度/℃-50~200±0.5℃质量流量/(kg/h)0~150, 0~500±0.2%
压力/MPa0~3.0, 0~4.5±0.5%压缩机功率/kW0~15±0.2%

表4

电动客车喷射补气热泵试验测试工况"

车外干球温度/℃车内干球温度/℃实际余热量/kW车外侧风量/(m3/h)车内侧风量/(m3/h)压缩机频率/Hz
7200.9,1.2,1.87000500050
0200.9,1.2,1.87000500060
-10200.9,1.2,1.87000500060
-20200.9,1.2,1.87000400060

图3

车外换热器支路和余热换热器支路并联的系统循环压焓图"

图4

车外环境-10℃时余热量对支路特性的影响"

图5

支路流量分配"

图6

各支路流量关系"

图7

制热性能"

1 刘卓然, 陈健, 林凯, 等. 国内外电动汽车发展现状与趋势[J]. 电力建设, 2015, 36(7): 25-32.
Liu Z R, Chen J, Lin K, et al. Domestic and foreign present situation and the tendency of electric vehicles [J]. Electric Power Construction, 2015, 36(7): 25-32.
2 Yuan X L, Liu X, Zuo J. The development of new energy vehicles for a sustainable future: a review [J]. Renewable and Sustainable Energy Reviews, 2015, 42: 298-305.
3 孙北方. PTC热敏陶瓷加热元件在汽车中的应用[J]. 电子制作, 2000, (11): 12.
Sun B F. Application of PTC thermal ceramic heating element in automobile [J]. Electronics Practice, 2000, (11): 12.
4 王鹏程. PTC热敏元件的进展与发展趋势[J]. 电子元件与材料, 1995, 14(3): 1-8.
Wang P C. Progress and development trends in PTC thermistors [J]. Electronic Components and Materials, 1995, 14(3): 1-8.
5 史保新, 马国远, 陈观生. 电动车用空调装置的研究[J]. 流体机械, 2002, 30(4): 48-50, 37.
Shi B X, Ma G Y, Chen G S. Research on heat pump system for electric vehicle air conditioning [J]. Fluid Machinery, 2002, 30(4): 48-50, 37.
6 Peng Q H, Du Q G. Progress in heat pump air conditioning systems for electric vehicles — a review [J]. Energies, 2016, 9(4): 240.
7 Malik T N, Bullard C W. Air conditioning hybrid electric vehicles while stopped in traffic [R]. Air Conditioning and Refrigeration Center, University of Illinois, 2004.
8 Qi Z G. Advances on air conditioning and heat pump system in electric vehicles - a review [J]. Renewable and Sustainable Energy Reviews, 2014, 38: 754-764.
9 柴沁虎, 马国远. 空气源热泵低温适应性研究的现状及进展[J]. 能源工程, 2002, (5): 25-31.
Chai Q H, Ma G Y. State of knowledge and current challenges in the ASHP developed for the cold areas [J]. Energy Engineering, 2002, (5): 25-31.
10 马国远, 邵双全. 寒冷地区空调用热泵的研究[J]. 太阳能学报, 2002, 23(1): 17-21.
Ma G Y, Shao S Q. Research on heat pump cycle for air conditioning in cold regions [J]. Acta Energiae Solaris Sinica, 2002, 23(1): 17-21.
11 陈浩. 大型电动客车热泵空调系统设计与试验研究[D]. 郑州: 中原工学院, 2016.
Chen H. Performance evaluation and design of heat pump air conditioning for electric bus [D]. Zhengzhou: Zhongyuan University of Technology, 2016.
12 张东京. 纯电动客车超低温热泵型空调系统结融霜特性研究[D]. 郑州: 中原工学院, 2019.
Zhang D J. Study on frosting characteristics of ultra-low temperature heat pump air conditioning system for pure electric bus [D]. Zhengzhou: Zhongyuan University of Technology, 2019.
13 周光辉, 禹佩利, 李海军, 等. 带经济器的热泵型纯电动客车空调系统结霜特性研究[J]. 低温与超导, 2019, 47(8): 75-79.
Zhou G H, Yu P L, Li H J, et al. Study on frosting performance of heat pump air conditioning system with economizer for only electric-driven vehicle [J]. Cryogenics & Superconductivity, 2019, 47(8): 75-79.
14 Han X X, Zou H M, Xu H B, et al. Experimental study on vapor injection air source heat pump with internal heat exchanger for electric bus [J]. Energy Procedia, 2019, 158: 4147-4153.
15 Han X X, Zou H M, Tian C Q, et al. Numerical study on the heating performance of a novel integrated thermal management system for the electric bus [J]. Energy, 2019, 186: 115812.
16 Shams-Zahraei M, Kouzani A Z, Kutter S, et al. Integrated thermal and energy management of plug-in hybrid electric vehicles [J]. Journal of Power Sources, 2012, 216: 237-248.
17 Bennion K, Thornton M. Integrated vehicle thermal management for advanced vehicle propulsion technologies [C]// SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2010: 2010-01-0836.
18 Pesaran A A. Battery thermal models for hybrid vehicle simulations [J]. Journal of Power Sources, 2002, 110(2): 377-382.
19 Kim S C, Kim M S, Hwang I C, et al. Heating performance enhancement of a CO2 heat pump system recovering stack exhaust thermal energy in fuel cell vehicles [J]. International Journal of Refrigeration, 2007, 30(7): 1215-1226.
20 Kim S C, Kim M S, Hwang I C, et al. Performance evaluation of a CO2 heat pump system for fuel cell vehicles considering the heat exchanger arrangements [J]. International Journal of Refrigeration, 2007, 30(7): 1195-1206.
21 Ahn J H, Kang H, Lee H S, et al. Heating performance characteristics of a dual source heat pump using air and waste heat in electric vehicles [J]. Applied Energy, 2014, 119: 1-9.
22 Cho C W, Lee H S, Won J P, et al. Measurement and evaluation of heating performance of heat pump systems using wasted heat from electric devices for an electric bus [J]. Energies, 2012, 5(3): 658-669.
23 Zou H M, Jiang B, Wang Q, et al. Performance analysis of a heat pump air conditioning system coupling with battery cooling for electric vehicles [J]. Energy Procedia, 2014, 61: 891-894.
24 钱程, 谷波, 田镇, 等. 纯电动汽车双热源热泵系统性能分析[J]. 上海交通大学学报, 2016, 50(4): 569-574.
Qian C, Gu B, Tian Z, et al. Performance analysis of dual source heat pump in electric vehicles [J]. Journal of Shanghai Jiao Tong University, 2016, 50(4): 569-574.
25 李萍, 谷波, 缪梦华. 废热回收型纯电动汽车热泵系统试验研究[J]. 上海交通大学学报, 2019, 53(4): 468-472.
Li P, Gu B, Miao M H. Experimental research on waste-heat recovery heat pump system in electric vehicles [J]. Journal of Shanghai Jiao Tong University, 2019, 53(4): 468-472.
26 张桂英. 纯电动汽车一体式热管理及节能技术研究[D]. 北京: 中国科学院大学, 2017.
Zhang G Y. Research on integrated thermal management and energy saving technology for pure electric vehicles [D]. Beijing: University of Chinese Academy of Sciences, 2017.
27 Zhang L, Hashimoto K, Hasegawa H, et al. Performance analysis of a heat pump system with integrated desiccant for electric vehicles [J]. International Journal of Refrigeration, 2018, 86: 154-162.
28 Tian Z, Gan W, Zhang X L, et al. Investigation on an integrated thermal management system with battery cooling and motor waste heat recovery for electric vehicle [J]. Applied Thermal Engineering, 2018, 136: 16-27.
29 Lee D Y, Cho C W, Won J P, et al. Performance characteristics of mobile heat pump for a large passenger electric vehicle [J]. Applied Thermal Engineering, 2013, 50(1): 660-669.
[1] 李凡, 陆高锋, 马光柏, 翟晓强, 杨顺法. 纵向涡强化圆管内换热的数值模拟及性能分析[J]. 化工学报, 2021, 72(S1): 120-126.
[2] 马秋鸣, 聂磊, 潘权稳, 山訸, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器换热性能[J]. 化工学报, 2021, 72(S1): 170-177.
[3] 匡以武, 孙礼杰, 王文, 耑锐, 张亮. 基于双流体模型的液氢流动沸腾数值模拟[J]. 化工学报, 2021, 72(S1): 184-193.
[4] 山訸, 马秋鸣, 潘权稳, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器冷却液侧传热与流动性能仿真[J]. 化工学报, 2021, 72(S1): 194-202.
[5] 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209.
[6] 赵海峰, 李洪, 李鑫钢, 高鑫. 多物理场耦合模拟微波蒸馏反应器:升温和沸腾过程[J]. 化工学报, 2021, 72(S1): 266-277.
[7] 林石泉, 赵雅鑫, 吕中原, 赖展程, 胡海涛. 亲疏水性对泡沫金属池沸腾换热特性的影响[J]. 化工学报, 2021, 72(S1): 295-301.
[8] 王玲玥, 朱进容, 王从乐, 吕辉, 成纯富, 张金业. 圆管束中导流器对其自然对流换热的影响[J]. 化工学报, 2021, 72(S1): 310-317.
[9] 王飞, 王建民, 邵双全. 数据中心冷却系统多级传热温差分析[J]. 化工学报, 2021, 72(S1): 348-355.
[10] 赵浚哲, 刘舫辰, 李元鲁, 杜文静. 低Reynolds数下内置三棱柱通道的流动与传热特性[J]. 化工学报, 2021, 72(S1): 382-389.
[11] 崔运浩, 乔建新, 王晓涛, 宋斌, 阳朝辉, 戴巍, 李海冰. 普冷温区斯特林制冷机[J]. 化工学报, 2021, 72(S1): 390-397.
[12] 陈建业, 丁月, 吴钊, 禹云星, 邵双全. 带涡流管的新型加氢流程数值研究[J]. 化工学报, 2021, 72(S1): 461-466.
[13] 姜佳彤, 胡斌, 王如竹, 刘华, 张治平, 李宏波. R1233zd(E)高温热泵用卧式冷凝器的换热动态模拟[J]. 化工学报, 2021, 72(S1): 98-105.
[14] 王彦红, 陆英楠, 李素芬, 东明. U形圆管中超临界压力RP-3航空煤油换热数值研究[J]. 化工学报, 2021, 72(9): 4639-4648.
[15] 刘辰玥, 郑通, 刘渊博, 温荣福, 陈凯, 马学虎. 异形仿生换热器壳侧对流换热的高效低阻特性研究[J]. 化工学报, 2021, 72(9): 4511-4522.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐欧官, 苏宏业, 计建炳, 金晓明, 褚健. 甲苯歧化与C9芳烃烷基转移反应动力学模型和模拟分析[J]. CIESC Journal, 2007, 15(3): 326 -332 .
[2] 张瑛, 窦涛, 鲍晓军, 李玉平, 李晓峰. 基于固相转化机理合成五元环沸石的新技术[J]. CIESC Journal, 2003, 11(6): 656 -659 .
[3] 张玉玲, 黄君礼, 程志辉, 杨士林. 微波溶剂法合成天冬氨酸-谷氨酸共聚物研究[J]. CIESC Journal, 2007, 15(3): 458 -462 .
[4] 屈玲, 佟大明, 吕志平, 萧墉壮, 窦涛. 苯乙烯在MCM-41介孔材料中聚合的研究[J]. CIESC Journal, 2003, 11(6): 677 -680 .
[5] 高正明, 施力田. 搅拌槽内温度对气含率的影响[J]. CIESC Journal, 2003, 11(2): 204 -207 .
[6] 石冰洁, 张卫东, 张泽廷, 于恩平. 超临界流体萃取塔的流体力学和传质性能[J]. CIESC Journal, 2002, 10(6): 696 -700 .
[7] 苏德林, 王建龙, 刘凯文, 周定. 曝气生物滤池处理石油采出水的动力学特性研究[J]. CIESC Journal, 2007, 15(4): 591 -594 .
[8] 叶世超, 李川娜, 陈匡民. Heat Transfer between Immersed Horizontal Tubes and Aerated Vibrated Fluidized Beds[J]. CIESC Journal, 1999, 7(2): 116 -125 .
[9] 刘刚, 徐志南, 岑沛霖. A Population Morphologically Structured Model for MicroscopicGrowth of Filamentous
Microorganism
[J]. CIESC Journal, 1999, 7(3): 252 -262 .
[10] 单国荣, 翁志学, 黄志明, 潘祖仁. A Generalized Rate Model for Free Radical Copolymerizationand Its Simulation[J]. CIESC Journal, 1999, 7(3): 214 -220 .