化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 336-341.doi: 10.11949/0438-1157.20201552

• 流体力学与传递现象 • 上一篇    下一篇

单螺杆膨胀机螺旋槽道内液膜分布均匀特性

刘献飞(),王恒,王方(),李志强,朱彩霞,张浩飞   

  1. 中原工学院能源与环境学院,河南 郑州 450007
  • 收稿日期:2020-11-02 修回日期:2021-01-18 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 王方 E-mail:lxf@zut.edu.cn;fwang@zut.edu.cn
  • 作者简介:刘献飞(1987—),男,博士,副教授,lxf@zut.edu.cn
  • 基金资助:
    国家自然科学基金项目(51906265);中原工学院青年骨干教师培养计划项目(2020XQG03);河南省高校科技创新人才计划项目(20HASTIT019)

Uniformity of liquid film distribution in helical channel of single screw expander

LIU Xianfei(),WANG Heng,WANG Fang(),LI Zhiqiang,ZHU Caixia,ZHANG Haofei   

  1. School of Energy and Environmental Engineering, Zhongyuan University of Technology, Zhengzhou 450007, Henan, China
  • Received:2020-11-02 Revised:2021-01-18 Published:2021-06-20 Online:2021-06-20
  • Contact: WANG Fang E-mail:lxf@zut.edu.cn;fwang@zut.edu.cn

摘要:

螺旋槽道内均匀分布的液膜厚度对减小气体泄漏,保证膨胀机高效稳定运行至关重要。本文采用VOF两相流数值模型,主要探讨螺旋槽道结构参数对y方向液膜膜厚均匀度分布的影响规律。根据前期试验获得的螺旋槽内两相环状流的试验数据验证了数值模型的准确性,给出了入射角度η=0.90β时,液膜沿螺旋槽道内的演变过程。可以看出,当η=0.90β时,扭转效应对螺旋槽液相分布的影响基本可以忽略不计,螺旋槽外侧液膜厚度沿y方向基本呈均匀分布。理论分析不同无量纲节距和曲率比对y方向液膜厚度均匀度的影响规律,结果表明:随着螺旋槽道无量纲节距的增大,液膜厚度均匀度有所增加,随着曲率比的增大,液膜厚度均匀度降低。

关键词: 螺旋槽道, VOF模型, 液膜, 均匀度

Abstract:

The evenness distribution of liquid film in helical channel is very important to reduce gas leakage, and ensure the efficient of the expander. In this paper, the numerical VOF model is used to analyze the influence of helical channel structure parameters on the film thickness evenness distribution in y direction. According to the experimental data of the two-phase annular flow in the helical channel obtained in the previous experiment, the accuracy of the numerical model is verified, and the evolution process of the liquid film distribution in the helical channel is revealed. It is pointed out that the influence of torsion effect on the liquid phase distribution of the helical channel is negligible as η=0.90β, and the thickness of the liquid film on the outside of the helical channel is evenness in the y direction. Theoretical analysis of dimensionless pitches and curvature ratios on the change of liquid film thickness shows that the evenness index of liquid film thickness increases obviously with the increase of the dimensionless pitch, and decreases with the increase of the curvature ratio.

Key words: helical rectangular channel, VOF model, liquid film, evenness index

中图分类号: 

  • O 359

图1

螺旋槽道及其主要几何参数"

表1

本文所采用螺旋槽道几何结构参数描述"

序号当量直径, d/mm螺旋直径, D/mm节距, H/mm曲率比, γ无量纲 螺距,λ
122.5195306.310.1150.5
222.5175274.890.1290.5
322.5155243.470.1450.5
422.5195428.830.1150.7
522.5195551.350.1150.9

表2

不同网格数下的预测结果比较"

节点比例节点数液相占有率

最小液膜

厚度/mm

平均液膜厚度/mm
0.0015751040.0704430.444340.5294
0.00121524780.0715321.038511.1937
0.0012371620.0719851.125121.2839
0.000952914030.0719991.125361.2871

表3

不同气液流率下试验和数值模拟结果对比"

气相流率/

(kg/s)

液相流率/

(kg/s)

试验液膜

厚度/mm

试验液膜

厚度/mm

相对

误差/%

0.08820.006852.00312.0793.79
0.15190.007351.92661.9863.08
0.249890.008061.81921.8662.57
0.318490.009351.64611.6822.18

图2

螺旋槽道不同横截面处的含液率分布及演变规律"

图3

不同无量纲节距下液膜厚度在η=0.9β时的变化"

图4

不同曲率比下液体厚度在η=0.9β时的变化"

1 王伟, 吴玉庭, 马重芳. 单螺杆技术提升可再生能源利用效率[J]. 建设科技, 2009, (6): 76-77.
Wang W, Wu Y T, Ma C F. The improvement of the utilization efficiency of renewable energy by single-screw technology [J]. Construction Science and Technology, 2009, (6): 76-77.
2 de Ziviani D, van den Broek M, de Paepe M. Geometry-based modeling of single screw expander for organic Rankine cycle systems in low-grade heat recovery [J]. Energy Procedia, 2014, 61: 100-103.
3 Li G Q, Lei B, Wu Y T, et al. Influence of inlet pressure and rotational speed on the performance of high pressure single screw expander prototype [J]. Energy, 2018, 147: 279-285.
4 沈丽丽, 王伟, 吴玉庭, 等. 单螺杆膨胀机内有机工质泄漏特性的数值研究[J]. 北京工业大学学报, 2018, 44(10): 1340-1346.
Shen L L, Wang W, Wu Y T, et al. Numerical study of leakage characteristics of organic fluids in single screw expander [J]. Journal of Beijing University of Technology, 2018, 44(10): 1340-1346.
5 Murai Y, Yoshikawa S, Toda S I, et al. Structure of air-water two-phase flow in helically coiled tubes [J]. Nuclear Engineering and Design, 2006, 236(1): 94-106.
6 Zhu H Y, Li Z X, Yang X T, et al. Flow regime identification for upward two-phase flow in helically coiled tubes [J]. Chemical Engineering Journal, 2017, 308: 606-618.
7 Zhang J, Guo J, Gong D T, et al. An investigation on oil/water separation mechanism inside helical pipes [J]. Journal of Hydrodynamics, Ser. B, 2006, 18(3): 343-347.
8 Colombo M, Cammi A, Guédon G R, et al. CFD study of an air-water flow inside helically coiled pipes [J]. Progress in Nuclear Energy, 2015, 85: 462-472.
9 da Mota F R M, Pagano D J. Simulation and experimental study of phase segregation in helical pipes: a new method for flow conditioning [J]. Flow Measurement and Instrumentation, 2014, 35: 99-108.
10 Jayakumar J S, Mahajani S M, Mandal J C, et al. Thermal hydraulic characteristics of air-water two-phase flows in helical pipes [J]. Chemical Engineering Research and Design, 2010, 88(4): 501-512.
11 Vashisth S, Nigam K D P. Prediction of flow profiles and interfacial phenomena for two-phase flow in coiled tubes [J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(1): 452-463.
12 Liu X F, Xia G D, Yang G. Experimental study on the characteristics of air-water two-phase flow in vertical helical rectangular channel [J]. International Journal of Multiphase Flow, 2015, 73: 227-237.
13 刘献飞, 夏国栋, 杨光. 矩形截面螺旋通道内弹状流的流动特性[J]. 化工学报, 2014, 65(11): 4231-4237.
Liu X F, Xia G D, Yang G. Flow characteristics of slug flow in helical rectangular channel [J]. CIESC Journal, 2014, 65(11): 4231-4237.
14 Xia G D, Liu X F, Zhai Y L, et al. Single-phase and two-phase flows through helical rectangular channels in single screw expander prototype [J]. Journal of Hydrodynamics, Ser. B, 2014, 26(1): 114-121.
15 Liu X F, Xia G D, Zhai Y L, et al. Numerical analysis of the two-phase pressure drop and liquid distribution in single-screw expander prototype [J]. Chinese Science Bulletin, 2014, 59(33): 4388-4396.
16 Liu X F, Zhang H, Wang F, et al. Numerical investigation of flow behavior and film thickness in the single screw expander [J]. International Journal of Mechanical Sciences, 2021, 190: 106047.
17 Lu X, Du X P, Zeng M, et al. Shell-side thermal-hydraulic performances of multilayer spiral-wound heat exchangers under different wall thermal boundary conditions [J]. Applied Thermal Engineering, 2014, 70(2): 1216-1227.
18 Liu X F, Zhao D H, Liu Y F, et al. Numerical analysis of the two-phase flow characteristics in vertical downward helical pipe [J]. International Journal of Heat and Mass Transfer, 2017, 108: 1947-1959.
19 Liu X F, Wang F, Li Z Q, et al. Parametric investigation of thermal-hydrodynamic performance in the innovative helically coiled heat exchangers in the heat pump system [J]. Energy and Buildings, 2020, 216: 109961.
20 Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100: 335-354.
21 Yu J W, Jiang Y Q, Cai W H, et al. Forced convective condensation flow and heat transfer characteristics of hydrocarbon mixtures refrigerant in helically coiled tubes [J]. International Journal of Heat and Mass Transfer, 2018, 124: 646-654.
22 李铁, 宋济洋, 吕昌尧, 等. 冷却管内气液界面流动特性数值模拟研究[J]. 东北电力大学学报, 2017, 37(1): 87-94.
Li T, Song J Y, Lü C Y, et al. Numerical simulation of gas-liquid interface flow characferistics in scrubbing-cooling pipe [J]. Journal of Northeast Dianli University, 2017, 37(1): 87-94.
23 Rodrı́guez D J, Shedd T A. Entrainment of gas in the liquid film of horizontal, annular, two-phase flow [J]. International Journal of Multiphase Flow, 2004, 30(6): 565-583.
[1] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[2] 宋哲, 许波, 陈振乾. 管壳式蒸发器内分流板均分性能的研究[J]. 化工学报, 2021, 72(9): 4629-4638.
[3] 朱业铭, 刘金平, 许雄文, 朱丹丹. 竖直多孔平板上液膜流动特性的研究[J]. 化工学报, 2021, 72(8): 4081-4092.
[4] 刘学文, 李金京, 全晓军, 熊伟. 单个固体颗粒促进薄液膜破裂的格子Boltzmann研究[J]. 化工学报, 2020, 71(7): 3091-3097.
[5] 王亚安,陈建义,叶松,宋占荣,韩明珊,杨洋. 管柱式气液旋流分离器液膜厚度的空间分布特性[J]. 化工学报, 2020, 71(11): 5216-5225.
[6] 叶学民, 李明兰, 张湘珊, 杨少东, 李春曦. 平板浸涂过程中的液膜排液影响因素[J]. 化工学报, 2019, 70(6): 2164-2173.
[7] 孙宏军, 王伟, 桂明洋. 水平管环状流液膜厚度与波动参数分布[J]. 化工学报, 2019, 70(11): 4162-4171.
[8] 李兆宁, 赵彦杰, 汤玉鹏. 尿素水溶液凝固结晶附着力特性研究[J]. 化工学报, 2018, 69(S2): 232-239.
[9] 李鸿如, 陈岩, 程旭, 杜文静, 衣宝葵, 辛公明. 不同管径毛细管的毛细蒸发特性实验[J]. 化工学报, 2018, 69(S1): 43-47.
[10] 杨文静, 郝木明, 曹恒超, 袁俊马, 李晗. 基于质量守恒边界条件的下游泵送螺旋槽液膜密封空化分析[J]. 化工学报, 2018, 69(9): 3932-3943.
[11] 梁刚涛, 张天宇, 陈红亮, 余海兵, 沈胜强. 多液滴同步冲击液膜时中间薄膜射流形成机理与动力学特征[J]. 化工学报, 2018, 69(8): 3356-3363.
[12] 曹恒超, 郝木明, 杨文静, 汪艳红, 李勇凡, 徐鲁帅. 双列螺旋槽液膜密封相变现象及性能[J]. 化工学报, 2018, 69(5): 2110-2119.
[13] 徐鲁帅, 郝木明, 李勇凡, 杨文静, 王赟磊, 曹恒超. 液膜密封非定常工况下的瞬态特性[J]. 化工学报, 2018, 69(4): 1547-1557.
[14] 曹恒超, 郝木明, 李振涛, 杨文静, 汪艳红, 袁俊马. 基于相变效应的内压型螺旋槽液膜密封性能分析[J]. 化工学报, 2017, 68(9): 3532-3540.
[15] 曹恒超, 郝木明, 李振涛, 杨文静, 孙震, 汪艳红, 任付军. 相变对螺旋槽液膜密封性能的影响[J]. 化工学报, 2017, 68(8): 3190-3201.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张光旭, 吴元欣, 马沛生, 田崎峰, 吴广文, 李定或, 王存文. 非均相羰基氧化一步合成碳酸二苯酯的研究(Ⅴ)筛选催化剂及优化合成条件[J]. CIESC Journal, 2003, 11(5): 526 -530 .
[2] 罗坤, 郑友取, 樊建人, 岑可法. 三维混合层中大涡结构与扩散颗粒的相互作用[J]. CIESC Journal, 2003, 11(4): 377 -382 .
[3] 许松林, 王军武, 徐世民, 王淑华. 短程蒸馏技术分离纯化二十八烷醇的研究[J]. CIESC Journal, 2003, 11(4): 480 -482 .
[4] 王延敏, 姚平经. 利用人工神经网络和遗传算法对热偶精馏过程进行模拟优化[J]. CIESC Journal, 2003, 11(3): 307 -311 .
[5] 陈增强, 毛宗星, 杜升之, 孙青林, 袁著祉. 基于IMC结构的PID-GPC的鲁棒性分析[J]. CIESC Journal, 2003, 11(1): 55 -61 .
[6] 张鹏, 刘春江, 王利东, 唐忠利, 余国琮. 规整填料在高压精馏条件下的传质性能[J]. CIESC Journal, 2002, 10(6): 635 -638 .
[7] 牟建海, 李干佐, 李英. 天然混合羧酸盐ASP复合驱油体系的研究[J]. CIESC Journal, 2001, 9(2): 162 -166 .
[8] 高瑛 石磊 姚平经. 废物最小化的过程集成方法及多目标优化[J]. CIESC Journal, 2001, 9(3): 267 -272 .
[9] 罗祎青,袁希钢,杨祖杰,刘春江. 浓度极稀物中回收微量重组分的精馏操作策略—准间歇精馏[J]. CIESC Journal, 2005, 13(3): 338 -342 .
[10] SUN Bin(孙斌), ZHANG Hongjian(张宏建), CHENG Lu(程路) and ZHAO Yuxiao(赵玉晓). Flow Regime Identification of Gas-liquid Two-phase Flow Based on HHT[J]. CIESC Journal, 2006, 14(1): 24 -30 .