化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 295-301.doi: 10.11949/0438-1157.20201558

• 流体力学与传递现象 • 上一篇    下一篇

亲疏水性对泡沫金属池沸腾换热特性的影响

林石泉1(),赵雅鑫2,吕中原1,赖展程2,胡海涛2()   

  1. 1.中国商用飞机有限责任公司上海飞机设计研究院,上海 201210
    2.上海交通大学制冷与低温工程研究所,上海 200240
  • 收稿日期:2020-11-02 修回日期:2021-01-14 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 胡海涛 E-mail:linshiquan@comac.cc;huhaitao2001@sjtu.edu.cn
  • 作者简介:林石泉(1984—),男,博士,linshiquan@comac.cc
  • 基金资助:
    国家自然科学基金项目(51976115);上海市科技创新行动计划项目(19142203000)

Effect of hydrophilicity and hydrophobicity on pool boiling heat transfer characteristics on metal foam

LIN Shiquan1(),ZHAO Yaxin2,LYU Zhongyuan1,LAI Zhancheng2,HU Haitao2()   

  1. 1.Shanghai Aircraft Design and Research Institute, Commercial Aircraft Corporation of China, Ltd. , Shanghai 201210, China
    2.Institute of Refrigeration and Cryogenics Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2020-11-02 Revised:2021-01-14 Published:2021-06-20 Online:2021-06-20
  • Contact: HU Haitao E-mail:linshiquan@comac.cc;huhaitao2001@sjtu.edu.cn

摘要:

随着航空飞机和航天器不断向高性能发展,热控制系统的紧凑性和散热效率亟需提高。泡沫金属具有超大的比表面积和高热导率,在航空航天热控制领域具有良好的应用前景。对亲水性和疏水改性泡沫金属内的池沸腾换热特性进行了试验研究,并与未改性泡沫金属进行对比,得出了亲疏水性对不同孔密度和孔隙率泡沫金属池沸腾换热特性的影响规律。测试样件为泡沫铜,孔密度为5、20和40 PPI,孔隙率为85%和95%。结果表明,疏水改性可使泡沫金属内池沸腾的起始过热度降低20%~30%;疏水改性泡沫金属和亲水改性泡沫金属分别在低热通量(q<4×105 W/m2)和高热通量(q≥4×105 W/m2)条件下具有最佳的沸腾换热性能;表面改性对于低孔隙率泡沫金属内池沸腾强化换热效果更加显著,且亲水改性的强化效果优于疏水改性。

关键词: 泡沫金属, 亲水性, 疏水性, 池沸腾, 传热

Abstract:

As aircraft and spacecraft continues to evolve toward higher performance, the compactness and heat dissipation efficiency of thermal control system need to be improved. Metal foam has great potential in the application of aviation and aerospace thermal control due to its large specific area and high thermal conductivity. The pool boiling heat transfer characteristics on hydrophilic and hydrophobic metal foam covers were studied experimentally, and compared with those of uncoated metal foams. The effect of hydrophilicity and hydrophobicity on the pool boiling heat transfer performance of metal foams with different pore densities and porosities is analyzed. The test samples are copper foams with pore densities of 5 PPI, 20 PPI and 40 PPI, and porosities of 85% and 95%. The results show that hydrophobic modification can reduce the incipient boiling superheated degree by 20%—30%, while hydrophilic modification has no significant effect on the onset of nucleate boiling. Hydrophobic metal foams and hydrophilic metal foams have the optimum pool boiling heat transfer performance under low heat flux (q<4×105 W/m2) and high heat flux (q≥4×105 W/m2) conditions, respectively. Surface modification has a more significant effect on pool boiling heat transfer enhancement for low porosity metal foams, and hydrophilic modification is more effective than hydrophobic modification in improving thermal performance.

Key words: metal foam, hydrophilic, hydrophobic, pool boiling, heat transfer

中图分类号: 

  • TK 172

图1

试验装置"

图2

未改性试验样件"

图3

亲疏水性对不同孔密度泡沫金属内沸腾起始点的影响"

图4

亲疏水性对不同孔密度泡沫金属池沸腾传热系数影响"

图5

亲疏水性对不同孔隙率泡沫金属内池沸腾传热系数的影响"

1 韩福生. 超轻开孔泡沫铝及其在航天领域的应用[J]. 航天器环境工程, 2013, 30(6): 570-575.
Han F S. Ultra-light open celled aluminum foam and its applications in aerospace field [J]. Spacecraft Environment Engineering, 2013, 30(6): 570-575.
2 Zhao C Y. Review on thermal transport in high porosity cellular metal foams with open cells [J]. International Journal of Heat and Mass Transfer, 2012, 55(13/14): 3618-3632.
3 赵亮, 田沣, 张丰华, 等. 开孔泡沫金属散热性能试验研究[J]. 航空计算技术, 2018, 48(5): 211-213, 217.
Zhao L, Tian F, Zhang F H, et al. Experiment study on heat dissipation performance of open foam metal [J]. Aeronautical Computing Technique, 2018, 48(5): 211-213, 217.
4 赵亮, 田沣, 杨明明, 等. 机载电子设备泡沫金属换热器研究[J]. 机械研究与应用, 2016, 29(1): 48-49, 53.
Zhao L, Tian F, Yang M M, et al. Research on foam metal heat exchanger of airborne electronic equipment [J]. Mechanical Research & Application, 2016, 29(1): 48-49, 53.
5 谢智勇. 高流速下泡沫金属内流动及传热特性的数值研究[D]. 大连: 大连理工大学, 2019.
Xie Z Y. Numerical investigation on flow and heat transfer performance in metal foams at high flow rate [D]. Dalian: Dalian University of Technology, 2019.
6 Wong S W, Chon W Y. Effects of ultrasonic vibrations on heat transfer to liquids by natural convection and by boiling [J]. AIChE Journal, 1969, 15(2): 281-288.
7 Xu Z G, Zhao C Y. Experimental study on pool boiling heat transfer in gradient metal foams [J]. International Journal of Heat and Mass Transfer, 2015, 85: 824-829.
8 Zhang B J, Kim K J, Yoon H. Enhanced heat transfer performance of alumina sponge-like nano-porous structures through surface wettability control in nucleate pool boiling [J]. International Journal of Heat and Mass Transfer, 2012, 55(25/26): 7487-7498.
9 杨卧龙, 纪献兵, 徐进良. 从自然到仿生到实际应用的超亲水表面[J]. 化学进展, 2016, 28(6): 763-772.
Yang W L, Ji X B, Xu J L. Superhydrophilic surfaces: from nature to biomimetics to application [J]. Progress in Chemistry, 2016, 28(6): 763-772.
10 马学虎, 宋天一, 兰忠, 等. 固液界面能差效应与冷凝传热强化研究进展[J]. 化工学报, 2006, 57(8): 1763-1775.
Ma X H, Song T Y, Lan Z, et al. Advances in liquid-solid-interfacial-energy-difference effect and condensation heat transfer enhancement [J]. Journal of Chemical Industry and Engineering (China), 2006, 57(8): 1763-1775.
11 勾昱君, 刘中良, 王皆腾, 等. 自然对流条件下仿生超疏水表面的抑霜研究[J]. 工程热物理学报, 2007, 28(4): 631-633.
Gou Y J, Liu Z L, Wang J T, et al. Frost formation on a bionic super-hydrophobic surface under natural convection conditions [J]. Journal of Engineering Thermophysics, 2007, 28(4): 631-633.
12 胡晨昱, 赖展程, 胡海涛, 等. 疏水改性对泡沫金属表面池沸腾换热特性的影响[J]. 制冷技术, 2018, 38(6): 8-11.
Hu C Y, Lai Z C, Hu H T, et al. Effect of hydrophobic modification on pool boiling heat transfer characteristics on metal foam covered surface [J]. Chinese Journal of Refrigeration Technology, 2018, 38(6): 8-11.
13 马强, 吴晓敏, 朱毅. 表面润湿性对核态池沸腾影响的试验研究[J]. 工程热物理学报, 2019, 40(3): 635-638.
Ma Q, Wu X M, Zhu Y. Experimental investigation of the effect of surface wettability on nucleate pool boiling [J]. Journal of Engineering Thermophysics, 2019, 40(3): 635-638.
14 Li Q, Kang Q J, Francois M M, et al. Lattice Boltzmann modeling of boiling heat transfer: the boiling curve and the effects of wettability [J]. International Journal of Heat and Mass Transfer, 2015, 85: 787-796.
15 Jo H, Kim S, Park H S, et al. Critical heat flux and nucleate boiling on several heterogeneous wetting surfaces: controlled hydrophobic patterns on a hydrophilic substrate [J]. International Journal of Multiphase Flow, 2014, 62: 101-109.
16 周儒鸿, 纪献兵, 孔庆盼, 等. 表面润湿性影响池沸腾传热的研究进展[J]. 热能动力工程, 2019, 34(2): 1-8.
Zhou R H, Ji X B, Kong Q P, et al. Research progress of pool boiling heat transferon different wettability surfaces [J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(2): 1-8.
17 陈粤, 刘俊威, 莫冬传, 等. 超疏水纳米结构表面池沸腾特性[J]. 工程热物理学报, 2011, 32(4): 634-636.
Chen Y, Liu J W, Mo D C, et al. Pool boiling performance of superhydrophobic nanostructured interface [J]. Journal of Engineering Thermophysics, 2011, 32(4): 634-636.
18 宋永吉, 任晓光, 蒋英杰, 等. 纳米结构超疏水表面的沸腾传热[J]. 化工进展, 2006, 25(z1): 298-301.
Song Y J, Ren X G, Jiang Y J, et al. Pool boiling heat transfer characteristics of a novel nanostructured super hydrophobic surface [J]. Chemical Industry and Engineering Progress, 2006, 25(z1): 298-301.
19 赵鹏飞, 冀文涛, 赵二涛, 等. 不同润湿性表面池沸腾换热特性研究[J]. 中国科技论文, 2018, 13(11): 1211-1216.
Zhao P F, Ji W T, Zhao E T, et al. Study on the pool boiling heat transfer of surfaces with different wettability [J]. China Sciencepaper, 2018, 13(11): 1211-1216.
20 徐鹏飞, 李强, 宣益民. 超亲水多孔表面制备及其池沸腾换热研究[J]. 工程热物理学报, 2014, 35(8): 1606-1609.
Xu P F, Li Q, Xuan Y M. Preparation and pool boiling heat transfer test of super-hydrophilic surface [J]. Journal of Engineering Thermophysics, 2014, 35(8): 1606-1609.
21 Li W, Chen Z C, Li J Y, et al. Subcooled flow boiling on hydrophilic and super-hydrophilic surfaces in microchannel under different orientations [J]. International Journal of Heat and Mass Transfer, 2019, 129: 635-649.
22 Zhou K, Coyle C, Li J Y, et al. Flow boiling in vertical narrow microchannels of different surface wettability characteristics [J]. International Journal of Heat and Mass Transfer, 2017, 109: 103-114.
23 Hsieh S S, Lin C Y. Subcooled convective boiling in structured surface microchannels [J]. Journal of Micromechanics and Microengineering, 2010, 20(1): 015027.
24 Wang G D, Cheng P, Bergles A E. Effects of inlet/outlet configurations on flow boiling instability in parallel microchannels [J]. International Journal of Heat and Mass Transfer, 2008, 51(9/10): 2267-2281.
25 Liu T Y, Li P L, Liu C W, et al. Boiling flow characteristics in microchannels with very hydrophobic surface to super-hydrophilic surface [J]. International Journal of Heat and Mass Transfer, 2011, 54(1/2/3): 126-134.
26 Choi C, Shin J S, Yu D I, et al. Flow boiling behaviors in hydrophilic and hydrophobic microchannels [J]. Experimental Thermal and Fluid Science, 2011, 35(5): 816-824.
27 Choi C, Huh C, Kim D, et al. Wettability effect on flow boiling in an MEMS-based single glass microchannel [C]// Proceedings of ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. Darmstadt, Germany, 2009: 635-642.
28 Hu H T, Zhao Y X, Lai Z C, et al. Experimental investigation on nucleate pool boiling heat transfer characteristics on hydrophobic metal foam covers [J]. Applied Thermal Engineering, 2020, 179: 115730.
29 Shi J, Jia X, Feng D Y, et al. Wettability effect on pool boiling heat transfer using a multiscale copper foam surface [J]. International Journal of Heat and Mass Transfer, 2020, 146: 118726.
30 Moffat R J. Describing the uncertainties in experimental results [J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17.
[1] 李凡, 陆高锋, 马光柏, 翟晓强, 杨顺法. 纵向涡强化圆管内换热的数值模拟及性能分析[J]. 化工学报, 2021, 72(S1): 120-126.
[2] 马秋鸣, 聂磊, 潘权稳, 山訸, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器换热性能[J]. 化工学报, 2021, 72(S1): 170-177.
[3] 匡以武, 孙礼杰, 王文, 耑锐, 张亮. 基于双流体模型的液氢流动沸腾数值模拟[J]. 化工学报, 2021, 72(S1): 184-193.
[4] 山訸, 马秋鸣, 潘权稳, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器冷却液侧传热与流动性能仿真[J]. 化工学报, 2021, 72(S1): 194-202.
[5] 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209.
[6] 赵海峰, 李洪, 李鑫钢, 高鑫. 多物理场耦合模拟微波蒸馏反应器:升温和沸腾过程[J]. 化工学报, 2021, 72(S1): 266-277.
[7] 王玲玥, 朱进容, 王从乐, 吕辉, 成纯富, 张金业. 圆管束中导流器对其自然对流换热的影响[J]. 化工学报, 2021, 72(S1): 310-317.
[8] 顾潇, 邹慧明, 韩欣欣, 唐明生, 田长青. 基于余热回收的电动客车喷射补气热泵的制热性能[J]. 化工学报, 2021, 72(S1): 326-335.
[9] 王飞, 王建民, 邵双全. 数据中心冷却系统多级传热温差分析[J]. 化工学报, 2021, 72(S1): 348-355.
[10] 赵浚哲, 刘舫辰, 李元鲁, 杜文静. 低Reynolds数下内置三棱柱通道的流动与传热特性[J]. 化工学报, 2021, 72(S1): 382-389.
[11] 吴中杰, 刘则艳, 谢连科, 崔美, 黄仁亮. 聚偏氟乙烯膜亲水改性及其乳液分离与重金属吸附应用[J]. 化工学报, 2021, 72(S1): 421-429.
[12] 姜佳彤, 胡斌, 王如竹, 刘华, 张治平, 李宏波. R1233zd(E)高温热泵用卧式冷凝器的换热动态模拟[J]. 化工学报, 2021, 72(S1): 98-105.
[13] 王彦红, 陆英楠, 李素芬, 东明. U形圆管中超临界压力RP-3航空煤油换热数值研究[J]. 化工学报, 2021, 72(9): 4639-4648.
[14] 刘辰玥, 郑通, 刘渊博, 温荣福, 陈凯, 马学虎. 异形仿生换热器壳侧对流换热的高效低阻特性研究[J]. 化工学报, 2021, 72(9): 4511-4522.
[15] 赵兰萍, 郭本涛, 杨志刚. 车用热泵内部冷凝器结构对性能的影响[J]. 化工学报, 2021, 72(9): 4616-4628.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张光旭, 吴元欣, 马沛生, 田崎峰, 吴广文, 李定或, 王存文. 非均相羰基氧化一步合成碳酸二苯酯的研究(Ⅴ)筛选催化剂及优化合成条件[J]. CIESC Journal, 2003, 11(5): 526 -530 .
[2] 杨晓宁. 基于矩法和时间域分析法研究稠密CO2中甲苯和对氯苯在硅胶固定床系统中的吸附和传递性质[J]. CIESC Journal, 2003, 11(3): 280 -288 .
[3] 梁军, 钱积新. 多变量统计过程监控:进展及其在化学工业的应用[J]. CIESC Journal, 2003, 11(2): 191 -203 .
[4] 余淑娴, 余祖兵, 邱祖民, 孙(韦华) . 甲基二氯硅烷-甲基乙烯基二氯硅烷-甲苯三元体系等压汽液平衡[J]. CIESC Journal, 2003, 11(2): 213 -216 .
[5] 祝一锋, 李小年, 高冬梅, 周春晖, 刘化章. 钌基氨合成催化剂氢氮吸附性能的研究[J]. CIESC Journal, 2003, 11(1): 15 -18 .
[6] 李湘,李忠,罗灵爱. 二苯并呋喃在活性炭上的吸附相平衡和动力学 [J]. CIESC Journal, 2005, 13(5): 701 -704 .
[7] 马志亚,官月平,刘先桥,刘会洲. 分散聚合法合成含有环氧基的无孔超顺磁性微球及其表征[J]. CIESC Journal, 2005, 13(2): 239 -243 .
[8] 杨水金,梁永光,余协卿,孙聚堂. 固体超强酸催化剂SO2-4/TiO2-MoO3的制备及其催化合成缩醛(酮)[J]. CIESC Journal, 2005, 13(1): 51 -55 .
[9] 张慧敏, 姚善泾. 杂合基因算法在酵母中间代谢途径代谢通量分析中的应用[J]. CIESC Journal, 2007, 15(2): 150 -156 .
[10] 陆燕, 梅乐和. 海澡酸钙胶囊化重组E.coli BL21(DE3)生产靛蓝[J]. CIESC Journal, 2007, 15(3): 387 -390 .