化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 184-193.doi: 10.11949/0438-1157.20201565

• 流体力学与传递现象 • 上一篇    下一篇

基于双流体模型的液氢流动沸腾数值模拟

匡以武1(),孙礼杰2,王文1(),耑锐2,张亮2   

  1. 1.上海交通大学制冷与低温工程研究所,上海 200240
    2.上海宇航系统工程研究所,上海 201108
  • 收稿日期:2020-11-02 修回日期:2021-01-15 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 王文 E-mail:kyiwu@sjtu.edu.cn;wenwang@sjtu.edu.cn
  • 作者简介:匡以武(1990—),男,博士,博士后,kyiwu@sjtu.edu.cn
  • 基金资助:
    上海航天先进技术联合研究基金项目;国家自然科学青年基金项目(51906148)

Numerical investigation of hydrogen flow boiling based on two-fluid model

KUANG Yiwu1(),SUN Lijie2,WANG Wen1(),ZHUAN Rui2,ZHANG Liang2   

  1. 1.Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
    2.Shanghai Aerospace Systems Engineering Institute, Shanghai 201108, China
  • Received:2020-11-02 Revised:2021-01-15 Published:2021-06-20 Online:2021-06-20
  • Contact: WANG Wen E-mail:kyiwu@sjtu.edu.cn;wenwang@sjtu.edu.cn

摘要:

基于双流体模型,建立了液氢管内流动沸腾的数值模型,在液体Reynolds数67000~660000、壁面热通量16300~317800 W/m2、饱和温度22~29 K、入口过冷度0~8 K的范围内,对管径5.95和6.35 mm的圆管内液氢流动沸腾开展了数值模拟研究,并与试验结果进行了对比。对比显示,液氢流动沸腾传热系数的模拟结果与试验数据的平均误差(MAE)为7.79%,94%的模拟数据都在±20%误差带范围内。

关键词: 氢, 流动沸腾, 两相流, 传热, 传质

Abstract:

As a kind of clean and efficient renewable energy with high colorific value, liquid hydrogen has been widely used in the fuel cell vehicles, explorer propelling and so on. Besides, liquid hydrogen can also be used for the cooling of devices working in cryogenic environment, for example High Temperature Superconducting (HTS) magnets. During the storage, transport and application, flow boiling of hydrogen can be easily triggered due to its extremely low saturation temperature. Heat transfer performance of hydrogen flow boiling is of significant importance and needs to be carefully studied. In conjunction with the two-fluid model, liquid hydrogen flow boiling model is developed according the Rensselaer Polytechnic Institute (RPI) model. In the model, heat transfer mechanism of hydrogen nucleate flow boiling can be divided into three parts, the evaporative heat transfer, the quenching heat transfer and the single liquid-phase convectional heat transfer. Some key parameters in the hydrogen flow boiling model, such as the bubble nucleation site density, bubble departure diameter and bubble departure frequency are carefully discussed and determined. Simulations of hydrogen flow boiling heat transfer in round tubes are conducted with the Re in 67000—660000, wall heat flux in 16300—317800 W/m2, saturation temperature in 22—29 K, inlet subcooling degree in 0—8 K and channel diameter in 5.95—6.35 mm. The simulated flow boiling heat transfer coefficients agree considerably well with the experimental data with the mean absolute error (MAE) of 7.79%. About 94% of the simulated results fall in the ±20% error band. It is reasonable to conclude that the new developed model successfully captures some basic heat transfer mechanisms of hydrogen flow boiling and can be expected to be used for the further study of hydrogen flow boiling heat transfer.

Key words: hydrogen, flow boiling, two-phase flow, heat transfer, mass transfer

中图分类号: 

  • TK 91

表1

液氢流动沸腾试验条件1[1]"

No.管径/mm长度/mm饱和压力/kPaReynolds数

壁面热通量/

(W/m2)

16.25152161.6220000~33000032900~67900
26.25152222.2560000~66000067200~129300

表2

液氢流动沸腾试验条件2[2]"

No.管径/mm长度/mm入口/饱和温度/K

流速/

(m/s)

壁面热通量/(W/m2)
1.15.9510029/291.3316300~58800
1.25.9510029/294.5919850~93100
1.35.9510029/298.6521100~101000
2.15.9510024/291.5539000~91700
2.25.9510024/294.5858900~150200
2.35.9510024/2912.147500~259200
3.15.9510021/291.5553200~102700
3.25.9510021/294.7296600~182600
3.35.9510021/2912.9184500~317800

图1

液氢流动沸腾换热对比(管径6.35 mm)"

图2

使用对比模型的计算结果(管径6.35 mm)"

图3

液氢流动沸腾传热系数对比(Tin=29 K)"

图4

液氢流动沸腾传热系数对比(Tin=24 K)"

图5

液氢流动沸腾传热系数对比(Tin=21 K)"

图6

液氢流动沸腾传热系数对比"

1 Walters H H. Single-tube heat transfer tests with liquid hydrogen [C]// Advances in Cryogenic Engineering. Proceedings of the 1960 Cryogenic Engineering Conference. University of Colorado and National Bureau of Standards Boulder, Colorado, 1961: 509-516.
2 Shirai Y, Tatsumoto H, Shiotsu M, et al. Forced flow boiling heat transfer of liquid hydrogen for superconductor cooling [J]. Cryogenics, 2011, 51(6): 295-299.
3 Hartwig J, Styborski J, McQuillen J, et al. Liquid hydrogen line chilldown experiments at high Reynolds numbers. Optimal chilldown methods [J]. International Journal of Heat and Mass Transfer, 2019, 137: 703-713.
4 王磊, 朱康, 马原, 等. 常重力及微重力下液氢膜态沸腾换热预测[J]. 航空动力学报, 2017, 32(8): 1835-1843.
Wang L, Zhu K, Ma Y, et al. Heat transfer prediction on film boiling of liquid hydrogen under normal gravity and microgravity environments [J]. Journal of Aerospace Power, 2017, 32(8): 1835-1843.
5 Mercado M, Wong N, Hartwig J. Assessment of two-phase heat transfer coefficient and critical heat flux correlations for cryogenic flow boiling in pipe heating experiments [J]. International Journal of Heat and Mass Transfer, 2019, 133: 295-315.
6 李祥东, 汪荣顺, 黄荣国, 等. 垂直圆管内液氮流动沸腾的理论模型及数值模拟[J]. 化工学报, 2006, 57(3): 491-497.
Li X D, Wang R S, Huang R G, et al. Modelling and numerical simulation of boiling flow of liquid nitrogen in vertical tube [J]. Journal of Chemical Industry and Engineering (China), 2006, 57(3): 491-497.
7 邵雪锋, 李祥东, 汪荣顺. 竖直环形通道内液氮流动沸腾的数值模拟[J]. 化学工程, 2011, 39(10): 82-86, 95.
Shao X F, Li X D, Wang R S. Numerical simulation of liquid nitrogen boiling flow in vertical annular pipe [J]. Chemical Engineering (China), 2011, 39(10): 82-86, 95.
8 吴舒琴, 李亦健, 魏健健, 等. 基于RPI沸腾模型的液氮池内核态沸腾过程模拟与分析[J]. 低温工程, 2018, (5): 27-32.
Wu S Q, Li Y J, Wei J J, et al. Numerical simulation and analysis of nucleate pool boiling process of liquid nitrogen based on RPI boiling model [J]. Cryogenics, 2018, (5): 27-32.
9 田野, 黄伟, 王海松, 等. 竖直加热通道内气泡脱离直径预测模型[J]. 中国科技论文, 2018, 13(23): 2654-2657.
Tian Y, Huang W, Wang H S, et al. Bubble departure diameter predicted model in vertical boiling system [J]. China Sciencepaper, 2018, 13(23): 2654-2657.
10 Kurul N, Podowski M Z. On the modeling of multidimensional effects in boiling channels [C]// Proceedings of the 27th National Heat Transfer Conference. Minneapolis, Minnesota, USA, 1991.
11 Mikic B B, Rohsenow W M. A new correlation of pool-boiling data including the effect of heating surface characteristics [J]. Journal of Heat Transfer, 1969, 91(2): 245-250.
12 Lemmert M, Chawla J M. Influence of flow velocity on surface boiling heat transfer coefficient [EB/OL]. 1977.
13 Kirichenko I A, Dolgoi M L, Levchenko N M, et al. The boiling of cryogenic liquids [EB/OL]. 1976.
14 Du J Y, Zhao C R, Bo H L. Investigation of bubble departure diameter in horizontal and vertical subcooled flow boiling [J]. International Journal of Heat and Mass Transfer, 2018, 127: 796-805.
15 Cole R. A photographic study of pool boiling in the region of the critical heat flux [J]. AIChE Journal, 1960, 6(4): 533-538.
16 高旭, 王学会, 雷刚, 等. 微重力流动沸腾气泡脱离机制[J]. 低温工程, 2015, (2): 7-11, 27.
Gao X, Wang X H, Lei G, et al. Bubble departure mechanism in microgravity flow boiling [J]. Cryogenics, 2015, (2): 7-11, 27.
17 Bland M E, Bailey C A, Davey G. Boiling from metal surfaces immersed in liquid nitrogen and liquid hydrogen [J]. Cryogenics, 1973, 13(11): 651-657.
18 Ranz W E, Marshall W R J. Evaporation from drops (Ⅱ) [J]. Chemical Engineering Progress, 1952, 48(173): 173-180.
19 Sato Y, Sekoguchi K. Liquid velocity distribution in two-phase bubble flow [J]. International Journal of Multiphase Flow, 1975, 2(1): 79-95.
20 Tomiyama A, Tamai H, Zun I, et al. Transverse migration of single bubbles in simple shear flows [J]. Chemical Engineering Science, 2002, 57(11): 1849-1858.
21 Ishii M. Two-fluid model for two-phase flow [J]. Multiphase Science and Technology, 1990, 5(1/2/3/4): 1-63.
22 Ünal H C. Maximum bubble diameter, maximum bubble-growth time and bubble-growth rate during the subcooled nucleate flow boiling of water up to 17.7 mN/m2 [J]. International Journal of Heat and Mass Transfer, 1976, 19(6): 643-649.
23 Kocamustafaogullari G, Ishii M. Interfacial area and nucleation site density in boiling systems [J]. International Journal of Heat and Mass Transfer, 1983, 26(9): 1377-1387.
[1] 李凡, 陆高锋, 马光柏, 翟晓强, 杨顺法. 纵向涡强化圆管内换热的数值模拟及性能分析[J]. 化工学报, 2021, 72(S1): 120-126.
[2] 林恩承, 王文, 匡以武, 石玉美, 耑锐, 孙礼杰. 低温输运管道预冷过程的气液两相数值分析[J]. 化工学报, 2021, 72(S1): 153-160.
[3] 马秋鸣, 聂磊, 潘权稳, 山訸, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器换热性能[J]. 化工学报, 2021, 72(S1): 170-177.
[4] 山訸, 马秋鸣, 潘权稳, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器冷却液侧传热与流动性能仿真[J]. 化工学报, 2021, 72(S1): 194-202.
[5] 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209.
[6] 曲泓硕, 张伦, 张小松, 纪文彬. 溶液除湿系统空气状态影响因素[J]. 化工学报, 2021, 72(S1): 210-217.
[7] 孙博, 王建伟, 张小松. 基于电渗析的溶液再生传质模型及性能分析[J]. 化工学报, 2021, 72(S1): 218-226.
[8] 赵文一, 匡以武, 王文, 张红星, 苗建印. 水平管内冷凝流动的稳定性[J]. 化工学报, 2021, 72(S1): 257-265.
[9] 赵海峰, 李洪, 李鑫钢, 高鑫. 多物理场耦合模拟微波蒸馏反应器:升温和沸腾过程[J]. 化工学报, 2021, 72(S1): 266-277.
[10] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[11] 林石泉, 赵雅鑫, 吕中原, 赖展程, 胡海涛. 亲疏水性对泡沫金属池沸腾换热特性的影响[J]. 化工学报, 2021, 72(S1): 295-301.
[12] 黄锟腾, 陈健勇, 陈颖, 罗向龙, 梁颖宗. 气液分离技术的研究现状[J]. 化工学报, 2021, 72(S1): 30-41.
[13] 王玲玥, 朱进容, 王从乐, 吕辉, 成纯富, 张金业. 圆管束中导流器对其自然对流换热的影响[J]. 化工学报, 2021, 72(S1): 310-317.
[14] 顾潇, 邹慧明, 韩欣欣, 唐明生, 田长青. 基于余热回收的电动客车喷射补气热泵的制热性能[J]. 化工学报, 2021, 72(S1): 326-335.
[15] 王飞, 王建民, 邵双全. 数据中心冷却系统多级传热温差分析[J]. 化工学报, 2021, 72(S1): 348-355.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANGLixin,KurichiKumar,A.S.Mujumdar. 干燥室中不同液体的喷雾蒸发对流动、传热、传质性能的影响[J]. CIESC Journal, 2004, 12(6): 737 -743 .
[2] 吉远辉, 吉晓燕, 冯新, 刘畅, 吕玲红, 陆小华. CO2-H2O和CO2-H2O-NaCl 体系的相平衡研究进展[J]. CIESC Journal, 2007, 15(3): 439 -448 .
[3] 赵锁奇, 许志明, 王仁安. 超临界流体萃取制备脱沥青油与沥青微粒[J]. CIESC Journal, 2003, 11(6): 691 -695 .
[4] 宋宝东, 丁辉, 吴金川, Hayashi Y., Talukder MMR, 王世昌. 表面活性剂包衣Candida rugosa脂肪酶在无溶剂下油水两相体系中催化橄榄油水解[J]. CIESC Journal, 2003, 11(5): 601 -603 .
[5] 张旭, 杨燕华, 张成芳, 王军. MDEA与哌嗪、二乙醇胺混合溶液吸收二氧化碳速率研究[J]. CIESC Journal, 2003, 11(4): 408 -413 .
[6] 王延敏, 姚平经. 利用人工神经网络和遗传算法对热偶精馏过程进行模拟优化[J]. CIESC Journal, 2003, 11(3): 307 -311 .
[7] 杨晓宁. 基于矩法和时间域分析法研究稠密CO2中甲苯和对氯苯在硅胶固定床系统中的吸附和传递性质[J]. CIESC Journal, 2003, 11(3): 280 -288 .
[8] 张波, 蔡钧, 刘洪来, 胡英. 含盐聚电解质溶液的分子热力学模型[J]. CIESC Journal, 2002, 10(3): 311 -315 .
[9] 唐松涛, 李定凯, 吕子安, 沈幼庭. 伴有生物质热解的流化床中的混沌传递现象[J]. CIESC Journal, 2003, 11(3): 358 -361 .
[10] 梁军, 钱积新. 多变量统计过程监控:进展及其在化学工业的应用[J]. CIESC Journal, 2003, 11(2): 191 -203 .