化工学报 ›› 2021, Vol. 72 ›› Issue (8): 4055-4063.doi: 10.11949/0438-1157.20201618

• 流体力学与传递现象 • 上一篇    下一篇

基于超声技术的沉浸式换热器强化传热研究

林伟翔1(),苏港川1,陈强2,文键3,王斯民1()   

  1. 1.西安交通大学化学工程与技术学院,陕西 西安 710049
    2.中石化炼化工程集团洛阳技术研发中心,河南 洛阳 471003
    3.西安交通大学能源与动力工程学院,陕西 西安 710049
  • 收稿日期:2020-11-10 修回日期:2021-02-21 出版日期:2021-08-05 发布日期:2021-08-05
  • 通讯作者: 王斯民 E-mail:lwx_xwl@stu.xjtu.edu.cn;smwang@xjtu.edu.cn
  • 作者简介:林伟翔(1998—),男,硕士研究生,lwx_xwl@stu.xjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51676146);超声波-微滤强化渣油加氢工程技术开发(120070)

Research on heat transfer enhancement of immersed coil heat exchanger by ultrasonic technology

Weixiang LIN1(),Gangchuan SU1,Qiang CHEN2,Jian WEN3,Simin WANG1()   

  1. 1.School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
    2.SEG R&D Center of Engineering Technology, Luoyang 471003, Henan, China
    3.School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • Received:2020-11-10 Revised:2021-02-21 Published:2021-08-05 Online:2021-08-05
  • Contact: Simin WANG E-mail:lwx_xwl@stu.xjtu.edu.cn;smwang@xjtu.edu.cn

摘要:

针对沉浸式换热器管外强化传热的问题,采用振动壁面的方式向换热器内输入超声波,研究了超声外场对沉浸式换热器内的管外流动、空化现象以及传热强化的作用。超声作用在流体中能够产生空化现象和声流的传播。其空化作用使得邻近振动面的流体发生液气相变,在远离振子的区域发生微小气泡的膨胀,换热器管外流体区域的平均气体体积分数由未加载超声时的0.01302最大增至0.01359。声流现象使得换热器管外流体的流速具有和超声波相同的脉动变化特性,呈高低速相间分布流向换热器两侧,最低速度接近0,最高速度4.93 m·s-1,平均流速由0.0248 m·s-1增至0.102 m·s-1,超声作用效果显著。在空化和声流的双重作用下,换热管外表面湍动能均值由2.090×10-4 m2·s-2增大至0.01847 m2·s-2,表明换热管外表面流体受到扰动增强,换热管外表面对流传热系数由1634.533 W·m-2·K-1增大至2031.069 W·m-2·K-1,传热强化比率达24.26%。本研究对超声技术在沉浸式换热器内的应用具有重要意义。

关键词: 强化传热, 沉浸式换热器, 超声波, 空化现象, 气液两相流, 流动特性

Abstract:

Aiming at the problem of heat transfer enhancement outside the tube of immersed coil heat exchangers, the ultrasound is imposed into the heat exchanger by means of vibration surface, and the influence of ultrasonic field on the flow pattern, cavitation phenomenon and heat transfer enhancement outside the tube of immersed coil heat exchanger is studied. The cavitation and ultrasound propagation phenomenon are generated by ultrasonic technology. The cavitation phenomenon induces liquid-vapor phase transition near the vibration surface, while the expansion of tiny bubbles occurs away from the vibration surface. The average vapor volume fraction of the heat exchanger without the ultrasound is 0.01302, which increases to 0.01359 with the ultrasound. The ultrasound propagation makes the flow velocity of the fluid outside the tube have the same pulsating change characteristics as that of the ultrasonic wave, by which the fluid flows towards both sides of the heat exchanger with high-low velocity interval distribution. The fluid has the lowest velocity near 0, and the highest velocity of 4.93 m·s-1, the average velocity of the whole heat exchanger increases from 0.0248 to 0.102 m·s-1 under the significant influence of the ultrasound. Under the dual effects of cavitation and acoustic flow, the average value of turbulent kinetic energy on the outer surface of the heat exchange tube increased from 2.090×10-4 to 0.01847 m2·s-2, indicating that the fluid on the outer surface of the heat exchange tube was disturbed and enhanced , the convective heat transfer coefficient of the outer surface of the heat exchange tube increased from 1634.533 to 2031.069 W·m-2·K-1, and the heat transfer enhancement ratio reached 24.26%. This research is of great significance to the application of ultrasonic technology in immersed coil heat exchanger.

Key words: heat transfer enhancement, immersed coil heat exchanger, ultrasound, cavitation phenomenon, gas-liquid flow, hydrodynamic characteristics

中图分类号: 

  • TK 124

图1

几何模型"

图2

振动模式示意图"

表1

网格无关性验证"

网格尺寸/mm网格数量热通量/(W·m-2)相对变化/%平均温度/℃相对变化/%出口温度/℃相对变化/%
1.01505785544.46298.7199299.9380
0.52461090627.445.9299.12420.14300.31320.13
0.43176794334.494.1299.58220.15300.60690.098
0.34701399956.906.0300.06950.16301.05080.15
0.290532105794.315.8300.54380.16301.50440.15
0.1332280106228.310.41300.65330.036301.53080.0087

图3

全局网格及局部网格放大图"

图4

试样表面参数曲线"

图5

未加载超声状态下换热器管外流动矢量图"

图6

超声作用0.005 s时换热器管外流动矢量及速度云图"

图7

加载超声前后换热器管外湍动能云图"

图8

未加载超声时换热器管外压力及气相分率云图"

图9

加载超声0.005 s时换热器管外压力及气相分率云图"

图10

表面对流传热系数随超声作用时间变化曲线"

1 Paradis P L, Rousse D R, Lamarche L, et al. One-dimensional model of a stratified thermal storage tank with supercritical coiled heat exchanger[J]. Applied Thermal Engineering, 2018, 134: 379-395.
2 Abdelsalam M Y, Lightstone M F, Cotton J S. A novel approach for modelling thermal energy storage with phase change materials and immersed coil heat exchangers[J]. International Journal of Heat and Mass Transfer, 2019, 136: 20-33.
3 Huang Z J, Zou Y K, Ding J, et al. Experimental investigation of heat transfer in coiled tube type molten salt steam generator[J]. Applied Thermal Engineering, 2019, 148: 1131-1138.
4 Ye Q, Li S H. Investigation on the performance and optimization of heat pump water heater with wrap-around condenser coil[J]. International Journal of Heat and Mass Transfer, 2019, 143: 118556.
5 朱冬生, 沈家龙, 蒋翔, 等. 蒸发式冷凝器性能研究及强化[J]. 制冷学报, 2006, 27(3): 45-49.
Zhu D S, Shen J L, Jiang X, et al. Study on performance enhancement for evaporative condenser[J]. Journal of Refrigeration, 2006, 27(3): 45-49.
6 高松涛, 王芳, 陈曦, 等. 沉浸式蒸发盘管蓄冰机理分析及仿真[J]. 低温工程, 2010,(3): 30-34.
Gao S T, Wang F, Chen X, et al. Analysis on ice-storage mechanism and simulation for an immersion evaporative coil[J]. Cryogenics, 2010,(3): 30-34.
7 Pan J, Mao D, Bai J H, et al. Thermal behavior calculation and analysis of submerged combustion LNG vaporizer[J]. Applied Thermal Engineering, 2020, 178: 115660.
8 韩昌亮, 任婧杰, 董文平, 等. 沉浸式汽化器壳程流体传热实验与数值模拟[J]. 化工学报, 2016, 67(10): 4095-4103.
Han C L, Ren J J, Dong W P, et al. Experimental study and numerical simulation on shell side fluid heat transfer in submerged combustion vaporizer[J]. CIESC Journal, 2016, 67(10): 4095-4103.
9 史美中, 王中铮. 热交换器原理与设计[M]. 5版. 南京: 东南大学出版社, 2014.
Shi M Z, Wang Z Z. Principle and Design of Heat Exchangers[M]. 5th ed. Nanjing: Southeast University Press, 2014.
10 毕纪葛, 潘万贵, 周俊超, 等. 四斜叶桨搅拌下釜内盘管非稳态对流传热过程的模拟和实验研究[J]. 高校化学工程学报, 2015, 29(4): 780-788.
Bi J G, Pan W G, Zhou J C, et al. CFD simulation and experimental study of heat transfer in a stirred tank equipped with a pitched-blade turbine and helical coils[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(4): 780-788.
11 Alimoradi A, Olfati M, Maghareh M. Numerical investigation of heat transfer intensification in shell and helically coiled finned tube heat exchangers and design optimization[J]. Chemical Engineering and Processing: Process Intensification, 2017, 121: 125-143.
12 李安军, 邢桂菊, 周丽雯. 换热器强化传热技术的研究进展[J]. 冶金能源, 2008, 27(1): 50-54.
Li A J, Xing G J, Zhou L W. Progress in study on technology of heat transfer enhancement for heat exchanger[J]. Energy for Metallurgical Industry, 2008, 27(1): 50-54.
13 姜鹏, 阎华, 张震, 等. 换热器内插件的研究进展[J]. 广州化工, 2011, 39(20): 1-2, 19.
Jiang P, Yan H, Zhang Z, et al. Development on heat exchanger inserts research[J]. Guangzhou Chemical Industry, 2011, 39(20): 1-2, 19.
14 林书玉, 张福成, 郭孝武. 关于改善超声清洗声场均匀性的研究[J]. 应用声学, 1993, 12(2): 34-38.
Lin S Y, Zhang F C, Guo X W. Study on improving the uniformity of ultrasonic cleaning sound field [J]. Applied Acoustics, 1993, 12(2): 34-38.
15 Chen B Q, Wan Z P, Chen G, et al. Improvement of ultrasonic heat transfer enhancement using acoustical focusing and resonance properties[J]. International Communications in Heat and Mass Transfer, 2019, 104: 60-69.
16 Wang Y C, Yao M C. Realization of cavitation fields based on the acoustic resonance modes in an immersion-type sonochemical reactor[J]. Ultrasonics Sonochemistry, 2013, 20(1): 565-570.
17 郑军, 曾丹苓, 王萍, 等. 利用流体脉动强化换热的试验研究[J]. 热科学与技术, 2003, 2(3): 245-249.
Zheng J, Zeng D L, Wang P, et al. Experimental study of heat transfer enhancement with pulsating flow[J]. Journal of Thermal Science and Technology, 2003, 2(3): 245-249.
18 吕平, 刘文杰, 张博, 等. 振动对管内流体对流传热影响实验研究[J]. 大连理工大学学报, 2018, 58(2): 118-123.
Lyu P, Liu W J, Zhang B, et al. Experiment study of vibration effect on convective heat transfer characteristics of internal flow in tube[J]. Journal of Dalian University of Technology, 2018, 58(2): 118-123.
19 陈伟中. 声空化物理[M]. 北京: 科学出版社, 2014.
Chen W Z. Acoustic Cavitation Physics [M]. Beijing: Science Press, 2014.
20 Kim H J, Jeong J H. Numerical analysis of experimental observations for heat transfer augmentation by ultrasonic vibration[J]. Heat Transfer Engineering, 2006, 27(2): 14-22.
21 Schneider B, Koşar A, Kuo C J, et al. Cavitation enhanced heat transfer in microchannels[J]. Journal of Heat Transfer, 2006, 128(12): 1293-1301.
22 张艾萍, 夏荣涛, 丁权, 等. 超声空化对换热器换热效果影响的研究[J]. 化工机械, 2016, 43(6): 764-769, 809.
Zhang A P, Xia R T, Ding Q, et al. Study on influence of ultrasonic cavitation on heat transfer effect of heat exchangers[J]. Chemical Engineering & Machinery, 2016, 43(6): 764-769, 809.
23 张艾萍, 张越. 基于场协同理论的超声波对强化换热影响[J]. 热能动力工程, 2017, 32(5): 19-25, 134.
Zhang A P, Zhang Y. Ultrasound effects on improving heat transfer based on field synergy theory[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32(5): 19-25, 134.
24 荣兵兵, 江斌, 倪宜华. 基于超声技术的沉浸式换热器强化换热的仿真研究[J]. 南方农机, 2017, 48(9): 69-73.
Rong B B, Jiang B, Ni Y H. Simulation study on heat transfer enhancement of immersive heat exchanger based on ultrasonic technology [J]. China Southern Agricultural Machinery, 2017, 48(9): 69-73.
25 沈灵. 基于超声空化的振动边界作用流场的数值模拟[D]. 北京: 清华大学, 2011.
Shen L. Numerical simulation of the flow field induced by vibrating surface in the application of ultrasonic cavitation[D]. Beijing: Tsinghua University, 2011.
26 Launder B E, Spalding D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(2): 269-289.
27 Cheng H Y, Long X P, Ji B, et al. A new Euler-Lagrangian cavitation model for tip-vortex cavitation with the effect of non-condensable gas[J]. International Journal of Multiphase Flow, 2021, 134: 103441.
28 黄彪, 王国玉, 张博, 等. 空化模型在非定常空化流动计算的应用评价与分析[J]. 船舶力学, 2011, 15(11): 1195-1202.
Huang B, Wang G Y, Zhang B, et al. Assessment of cavitation models for computation of unsteady cavitating flows[J]. Journal of Ship Mechanics, 2011, 15(11): 1195-1202.
29 Singhal A K, Athavale M M, Li H Y, et al. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002, 124(3): 617-624.
30 孙冰. 基于FLUENT软件的超声空化数值模拟[D]. 大连: 大连海事大学, 2008.
Sun B. Numerical simulation of ultrasonic cavitation based on FLUENT[D]. Dalian: Dalian Maritime University, 2008.
31 孙冰, 张会臣. 基于CFD方法的超声空化发生特性数值分析[J]. 润滑与密封, 2009, 34(4): 55-60.
Sun B, Zhang H C. Numerical simulation of ultrasonic cavitation based on FLUENT[J]. Lubrication Engineering, 2009, 34(4): 55-60.
[1] 林恩承, 王文, 匡以武, 石玉美, 耑锐, 孙礼杰. 低温输运管道预冷过程的气液两相数值分析[J]. 化工学报, 2021, 72(S1): 153-160.
[2] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[3] 黄锟腾, 陈健勇, 陈颖, 罗向龙, 梁颖宗. 气液分离技术的研究现状[J]. 化工学报, 2021, 72(S1): 30-41.
[4] 张经伟, 刘永阳, 刘东, 邵国栋, 李元鲁, 刘舫辰, 杜文静. 竖直壁面上含SO2气体的锅炉烟气的低温冷凝特性[J]. 化工学报, 2021, 72(S1): 475-481.
[5] 燕子腾, 吴国明, 庄大伟, 丁国良, 曹法立, 孟建军. 用于微通道换热器的循环流道分流器的设计方法与应用效果[J]. 化工学报, 2021, 72(S1): 77-83.
[6] 张海, 徐英, 张涛, 孙涔崴, 魏传顺, 戴志向. 丝网传感器的气液两相流可视化测量特性研究[J]. 化工学报, 2021, 72(9): 4573-4583.
[7] 赵兰萍, 郭本涛, 杨志刚. 车用热泵内部冷凝器结构对性能的影响[J]. 化工学报, 2021, 72(9): 4616-4628.
[8] 赵雨萌, 王亦飞, 彭昕, 位宗瑶, 于广锁, 王辅臣. 洗涤冷却室垂直环隙空间内液相流动结构的研究[J]. 化工学报, 2021, 72(8): 4039-4046.
[9] 姜洪鹏, 白敏丽, 高栋栋, 高林松, 吕继组. 超疏水/亲水性结构表面流动沸腾传热实验研究[J]. 化工学报, 2021, 72(8): 4093-4103.
[10] 石珊珊, 魏爱博, 张小斌. 液氮超声空化CFD模拟及实验研究[J]. 化工学报, 2021, 72(4): 1930-1938.
[11] 别海燕, 黄晨, 安维中, 李玉龙, 林子昕. 正反馈式流体振荡器内部流动特性的数值模拟[J]. 化工学报, 2021, 72(3): 1504-1511.
[12] 郝仁杰, 谯敏, 黄卫星. 气-液并流通过堆叠筛板填料的脉冲流特性[J]. 化工学报, 2021, 72(3): 1314-1321.
[13] 陆海峰, 阮琥, 曹嘉琨, 郭晓镭, 刘海峰, 袁崇硕. 细粉下料过程的气固流体动力学作用分析[J]. 化工学报, 2021, 72(11): 5533-5542.
[14] 丁国栋, 陈家庆, 李振林, 蔡小垒. 注气孔位置对文丘里管式微气泡发生器成泡特性的影响分析[J]. 化工学报, 2021, 72(11): 5552-5562.
[15] 高颂,徐燕燕,李继香,叶爽,黄伟光. 基于TFM-PBM耦合模型的离心泵内微气泡破碎合并的模拟研究[J]. 化工学报, 2021, 72(10): 5082-5093.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 严月根,CalvertC.Churn,何光辉,郑巧庚,PhilipC.Y.Wong. 离浓度有毒化工废水处理工艺诊治和优化[J]. CIESC Journal, 2005, 13(6): 800 -808 .
[2] 刘植昌, 孟祥海, 徐春明, 高金森. 重油催化裂解汽柴油二次裂解性能研究[J]. CIESC Journal, 2007, 15(3): 309 -314 .
[3] 汤艳峰,张淑芬,杨锦宗. 在NaOH-烯丙基氯-DMSO体系中合成烯丙基蔗糖的新方法[J]. CIESC Journal, 2005, 13(6): 835 -836 .
[4] 孙海翔, 张林, 柴红, 陈欢林. 壳聚糖亲和膜脱除蛋白质溶液中的内毒素[J]. CIESC Journal, 2005, 13(4): 457 -463 .
[5] 吴燕翔, 王碧玉. 恒压过滤介质阻力分析[J]. CIESC Journal, 2004, 12(1): 33 -36 .
[6] 闫平祥, 蓝兴英, 徐春明, 高金森. RFCC沉降器内油浆气化率的初步研究[J]. CIESC Journal, 2007, 15(3): 315 -319 .
[7] 刘永健, 袁希钢, 罗祎青. 基于浓度间隔分析的用水系统集成(II)不连续过程[J]. CIESC Journal, 2007, 15(3): 369 -375 .
[8] 钟理, 罗京莉, K.Chuang. 中温H2S-空气燃料电池阴极催化剂的研究[J]. CIESC Journal, 2007, 15(3): 305 -308 .
[9] 徐欧官, 苏宏业, 计建炳, 金晓明, 褚健. 甲苯歧化与C9芳烃烷基转移反应动力学模型和模拟分析[J]. CIESC Journal, 2007, 15(3): 326 -332 .
[10] 秦炜, 李振宇, 汪敏, 戴猷元. 三烷基胺萃取氨基磺酸及其废水的特性研究[J]. CIESC Journal, 2004, 12(1): 137 -142 .