化工学报 ›› 2021, Vol. 72 ›› Issue (8): 4093-4103.doi: 10.11949/0438-1157.20201903

• 流体力学与传递现象 • 上一篇    下一篇

超疏水/亲水性结构表面流动沸腾传热实验研究

姜洪鹏(),白敏丽(),高栋栋,高林松,吕继组   

  1. 大连理工大学能源与动力学院,辽宁 大连 116024
  • 收稿日期:2020-12-23 修回日期:2021-04-19 出版日期:2021-08-05 发布日期:2021-08-05
  • 通讯作者: 白敏丽 E-mail:jianghp1995@163.com;baiminli@dlut.edu.com
  • 作者简介:姜洪鹏(1995—),男,硕士研究生,jianghp1995@163.com
  • 基金资助:
    国家自然科学基金项目(51876027);中央高校基本科研业务费专项资金(DUT19JC09)

Experimental study on flow boiling heat transfer on superhydrophobic/hydrophilic structure surface

Hongpeng JIANG(),Minli BAI(),Dongdong GAO,Linsong GAO,Jizu LYU   

  1. School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
  • Received:2020-12-23 Revised:2021-04-19 Published:2021-08-05 Online:2021-08-05
  • Contact: Minli BAI E-mail:jianghp1995@163.com;baiminli@dlut.edu.com

摘要:

用激光烧蚀方法在抛光后的铜上制备出四种无需涂覆修饰即可获得超疏水/亲水性的规则微阵列结构表面。基于流动可视化与温度数据结果,分析了表面浸润性和过冷度对流动沸腾传热性能的影响,与经典汽化核心密度关联式进行了对比。结果表明:疏水表面可削弱单相对流传热,大幅强化沸腾传热,最大传热系数提高了75.5%,沸腾起始点提前3.5 K,且汽化核心数目较裸铜表面提高了5倍以上,但有较低的临界热通量。超亲水表面可增强单相对流传热、小幅度提升流动沸腾传热。对比亲水表面与疏水表面的气泡生长过程,发现疏水表面尾端气泡容易汇聚,生长周期较长;而亲水表面没有发生明显的气泡汇聚行为,气泡生长周期较短。

关键词: 微尺度, 气液两相流, 传热, 超疏水, 超亲水

Abstract:

The laser ablation method is used to prepare four superhydrophobic/hydrophilic regular microarray structure surfaces on the polished copper without coating modification. In this work, visualization and temperature processing calculations were applied to analyze the effects of surface wettability and subcooling on flow boiling heat transfer performance, then the active nucleation site density between experimental data and predicted value were compared. The results show that the hydrophobic surface has a negative effect on single-phase flow heat transfer and presents an outstanding heat transfer coefficient (HTC) by 75.5% compared with the bare copper surface. Simultaneously, it has an early appearance of onset of nucleate by 3.5 K, and the number of nucleation sites was increased by more than 5 times compared with the bare copper surface, but has a lower critical heat flux. The super hydrophilic surface could enhance the single-phase flow heat transfer and slightly increased the flow boiling heat transfer. Comparing the bubble growth process on the hydrophilic and hydrophobic surface, the bubbles at the end of the hydrophobic surface were easy to coalesce and the growth period was longer, while the growth period of bubbles on the hydrophilic surface was shorter, and no obvious bubble coalescence occurred.

Key words: microscale, gas-liquid flow, heat transfer, superhydrophobic, superhydrophilic

中图分类号: 

  • TK 124
1 胡帼杰, 过增元. 传热过程的效率[J]. 工程热物理学报, 2011, 32(6): 1005-1008.
Hu G J, Guo Z Y. The efficiency of heat transfer process[J]. Journal of Engineering Thermophysics, 2011, 32(6): 1005-1008.
2 武凯歌, 王传志. 绿色低碳背景下内燃机优化设计研究现状及趋势[J]. 决策探索(中), 2017, (10): 85-86.
Wu K G, Wang C Z. Research status and trend of optimization design of internal combustion engine under green and low-carbon background [J]. Policy Research and Exploration, 2017, (10): 85-86.
3 Razuvaev A V, Slobodina E N. The operating conditions of the internal combustion engine with high temperature cooling[J]. Journal of Physics: Conference Series, 2020, 1441: 012026.
4 过增元. 国际传热研究前沿: 微细尺度传热[J]. 力学进展, 2000, 30(1): 1-6.
Guo Z Y. Frontier of heat transfer─microscale heat transfer[J]. Advances in Mechanics, 2000, 30(1): 1-6.
5 邱学军, 白曙, 侯刘闻迪. 内燃机冷却水腔表面形貌对沸腾换热影响的研究[J]. 柴油机设计与制造, 2020, 26(1): 9-15.
Qiu X J, Bai S, Hou L. Study on effect of surface morphology on boiling heat transfer in water jacket of internal combustion engine[J]. Design and Manufacture of Diesel Engine, 2020, 26(1): 9-15.
6 Azároff L V. The key to the future of materials: interdisciplinarity[J]. JOM, 1991, 43(2): 27-29.
7 Wang Y Q, Luo J L, Heng Y, et al. Wettability modification to further enhance the pool boiling performance of the micro nano bi-porous copper surface structure[J]. International Journal of Heat and Mass Transfer, 2018, 119: 333-342.
8 Szczukiewicz S, Borhani N, Thome J R. Two-phase heat transfer and high-speed visualization of refrigerant flows in 100 × 100 μm2 silicon multi-microchannels[J]. International Journal of Refrigeration, 2013, 36(2): 402-413.
9 Liang G T, Mudawar I. Review of channel flow boiling enhancement by surface modification, and instability suppression schemes[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118864.
10 牟帅, 赵长颖, 徐治国. 局部表面改性紫铜方柱阵列池沸腾传热特性和机理[J]. 化工学报, 2019, 70(4): 1291-1301.
Mou S, Zhao C Y, Xu Z G. Pool boiling heat transfer performance and mechanism of square copper pillar arrays with partially-modified surface[J]. CIESC Journal, 2019, 70(4): 1291-1301.
11 Maddox D E, Mudawar I. Single- and two-phase convective heat transfer from smooth and enhanced microelectronic heat sources in a rectangular channel[J]. Journal of Heat Transfer, 1989, 111(4): 1045-1052.
12 He B L, Luo X P, Yu F, et al. Flow boiling characteristics in bi-porous minichannel heat sink sintered with copper woven tape[J]. International Journal of Heat and Mass Transfer, 2020, 158: 119988.
13 Zhao Z C, Ma X L, Li S L, et al. Visualization-based nucleate pool boiling heat transfer enhancement on different sizes of square micropillar array surfaces[J]. Experimental Thermal and Fluid Science, 2020, 119: 110212.
14 Wang H Z, Yang Y C, He M H, et al. Subcooled flow boiling heat transfer in a microchannel with chemically patterned surfaces[J]. International Journal of Heat and Mass Transfer, 2019, 140: 587-597.
15 杜保周, 李慧君, 郭保仓, 等. 微肋阵通道流动沸腾换热与压降特性[J]. 化工学报, 2018, 69(12): 4979-4989.
Du B Z, Li H J, Guo B C, et al. Flow boiling heat transfer and pressure drop characteristics in micro channel with micro pin fins[J]. CIESC Journal, 2018, 69(12): 4979-4989.
16 Hu H T, Zhao Y X, Lai Z C, et al. Experimental investigation on nucleate pool boiling heat transfer characteristics on hydrophobic metal foam covers[J]. Applied Thermal Engineering, 2020, 179: 115730.
17 Sadaghiani A K, Altay R, Noh H, et al. Effects of bubble coalescence on pool boiling heat transfer and critical heat flux —a parametric study based on artificial cavity geometry and surface wettability[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118952.
18 巩子琦, 蔡杰进, 王烨. 单个气泡上升行为的可视化实验研究[J]. 核科学与工程, 2019, 39(6): 1030-1039.
Gong Z Q, Cai J J, Wang Y. PIV experimental study of single bubble rising behavior[J]. Nuclear Science and Engineering, 2019, 39(6): 1030-1039.
19 Lee D, Kim B S, Moon H, et al. Enhanced boiling heat transfer on nanowire-forested surfaces under subcooling conditions[J]. International Journal of Heat and Mass Transfer, 2018, 120: 1020-1030.
20 Kim J S, Girard A, Jun S, et al. Effect of surface roughness on pool boiling heat transfer of water on hydrophobic surfaces[J]. International Journal of Heat and Mass Transfer, 2018, 118: 802-811.
21 杜玉浩. 发动机冷却水腔沸腾换热模型研究[D]. 济南: 山东大学, 2018.
Du Y H. Research on boiling heat transfer model of engine cooling water chamber[D]. Jinan: Shandong University, 2018.
22 Yamamoto K, Ogata S. 3-D thermodynamic analysis of superhydrophobic surfaces[J]. Journal of Colloid and Interface Science, 2008, 326(2): 471-477.
23 Patankar N A. Transition between superhydrophobic states on rough surfaces[J]. Langmuir, 2004, 20(17): 7097-7102.
24 李雪伍. 5052铝合金表面微纳结构的制备与性能研究[D]. 武汉: 武汉理工大学, 2017.
Li X W. Preparation and performance research of micro-nano structures on 5052 Al alloy surface[D]. Wuhan: WuhanUniversity of Technology, 2017.
25 Chen J C. Correlation for boiling heat transfer to saturated fluids in convective flow[J]. Industrial and Engineering Chemistry Process Design and Development, 1966, 5(3): 322-329.
26 陈佳明, 郭飞. 亲疏水共型表面升温过程中气泡生长行为研究[J]. 工程热物理学报, 2020, 41(8): 1966-1973.
Chen J M, Guo F. Investigation of bubble growth behaviors on hydrophilic-hydrophobic conformal surfaces during heating process[J]. Journal of Engineering Thermophysics, 2020, 41(8): 1966-1973.
27 Yuan B, Zhang Y H, Zhou J, et al. Critical heat flux prediction model for flow boiling on micro-pin-finned surfaces[J]. International Journal of Heat and Mass Transfer, 2020, 154: 119693.
28 Basu N, Warrier G R, Dhir V K. Onset of nucleate boiling and active nucleation site density during subcooled flow boiling[J]. Journal of Heat Transfer, 2002, 124(4): 717-728.
29 Paz C, Conde M, Porteiro J, et al. Effect of heating surface morphology on active site density in subcooled flow nucleated boiling[J]. Experimental Thermal and Fluid Science, 2017, 82: 147-159.
30 Končar B, Kljenak I, Mavko B. Modelling of local two-phase flow parameters in upward subcooled flow boiling at low pressure[J]. International Journal of Heat and Mass Transfer, 2004, 47(6/7): 1499-1513.
31 Hibiki T, Ishii M. Active nucleation site density in boiling systems[J]. International Journal of Heat and Mass Transfer, 2003, 46(14): 2587-2601.
[1] 李凡, 陆高锋, 马光柏, 翟晓强, 杨顺法. 纵向涡强化圆管内换热的数值模拟及性能分析[J]. 化工学报, 2021, 72(S1): 120-126.
[2] 林恩承, 王文, 匡以武, 石玉美, 耑锐, 孙礼杰. 低温输运管道预冷过程的气液两相数值分析[J]. 化工学报, 2021, 72(S1): 153-160.
[3] 马秋鸣, 聂磊, 潘权稳, 山訸, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器换热性能[J]. 化工学报, 2021, 72(S1): 170-177.
[4] 匡以武, 孙礼杰, 王文, 耑锐, 张亮. 基于双流体模型的液氢流动沸腾数值模拟[J]. 化工学报, 2021, 72(S1): 184-193.
[5] 山訸, 马秋鸣, 潘权稳, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器冷却液侧传热与流动性能仿真[J]. 化工学报, 2021, 72(S1): 194-202.
[6] 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209.
[7] 吴延鹏, 雷晓宇, 陆禹名, 陈卉妮. 太阳能利用透光表面超疏水增透膜研究进展[J]. 化工学报, 2021, 72(S1): 21-29.
[8] 苏伟, 芦志飞, 张小松. 竖直超疏水翅片间霜层动态生长特性[J]. 化工学报, 2021, 72(S1): 244-256.
[9] 赵海峰, 李洪, 李鑫钢, 高鑫. 多物理场耦合模拟微波蒸馏反应器:升温和沸腾过程[J]. 化工学报, 2021, 72(S1): 266-277.
[10] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[11] 林石泉, 赵雅鑫, 吕中原, 赖展程, 胡海涛. 亲疏水性对泡沫金属池沸腾换热特性的影响[J]. 化工学报, 2021, 72(S1): 295-301.
[12] 黄锟腾, 陈健勇, 陈颖, 罗向龙, 梁颖宗. 气液分离技术的研究现状[J]. 化工学报, 2021, 72(S1): 30-41.
[13] 王玲玥, 朱进容, 王从乐, 吕辉, 成纯富, 张金业. 圆管束中导流器对其自然对流换热的影响[J]. 化工学报, 2021, 72(S1): 310-317.
[14] 顾潇, 邹慧明, 韩欣欣, 唐明生, 田长青. 基于余热回收的电动客车喷射补气热泵的制热性能[J]. 化工学报, 2021, 72(S1): 326-335.
[15] 王飞, 王建民, 邵双全. 数据中心冷却系统多级传热温差分析[J]. 化工学报, 2021, 72(S1): 348-355.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 马利,张阳,杨基础. 反应与催化精馏耦合提纯乳酸新工艺的研究[J]. CIESC Journal, 2005, 13(1): 24 -31 .
[2] 王微微. 油气两相流空隙率测量[J]. CIESC Journal, 2007, 15(3): 339 -344 .
[3] 刘永健, 袁希钢, 罗祎青. 基于浓度间隔分析的用水系统集成(I)非传质操作[J]. CIESC Journal, 2007, 15(3): 361 -368 .
[4] 姬忠礼, 彭书, 谭立村. 陶瓷过滤器脉冲反吹系统的流场的数值模拟[J]. CIESC Journal, 2003, 11(6): 626 -632 .
[5] 魏伟胜, 徐建, 方大伟, 鲍晓军. 甲烷空气部分氧化制合成气喷动床反应器的研究[J]. CIESC Journal, 2003, 11(6): 643 -648 .
[6] 曹维良, 徐金龙, 张敬畅. 超(亚)临界CO2中涂料基体的相行为研究[J]. CIESC Journal, 2003, 11(2): 181 -184 .
[7] 未作君, 徐世民, 元英进, 许松林. 采用CFD模拟装备标准透平桨或45°-斜向上桨搅拌反应器内部流体力学特性[J]. CIESC Journal, 2003, 11(4): 467 -471 .
[8] 尤学一, H.J.Bart. 搅拌萃取塔内单相流动不同雷诺平均湍流模型结果的比较[J]. CIESC Journal, 2003, 11(3): 362 -366 .
[9] 雷志刚, 陈标华, 李建伟. 萃取精馏分离C4的过程设计[J]. CIESC Journal, 2003, 11(3): 297 -301 .
[10] 马沛生, 陈明鸣. 对苯二甲酸在几种溶剂中的固液平衡研究[J]. CIESC Journal, 2003, 11(3): 334 -337 .