化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4921-4930.doi: 10.11949/0438-1157.20210041

• 能源和环境工程 • 上一篇    下一篇

低阶煤原位制备ZnO基活性炭脱硫剂

演康1,3(),杨颂1,3,刘守军1,2,3(),杨超2,樊惠玲2,3,上官炬2,3   

  1. 1.太原理工大学化学化工学院,山西 太原 030024
    2.太原理工大学,煤科学与技术教育部和山西省重点实验室,山西 太原 030024
    3.山西省民用洁净燃料工程研究中心,山西 太原 030024
  • 收稿日期:2021-01-08 修回日期:2021-04-23 出版日期:2021-09-05 发布日期:2021-09-05
  • 通讯作者: 刘守军 E-mail:1310333755@qq.com;13303460889@163.com
  • 作者简介:演康(1995—),男,硕士研究生,1310333755@qq.com
  • 基金资助:
    国家自然科学基金项目(22078223);山西省高等学校科技创新项目(2019L0313);山西省专利推广实施资助计划(20200719)

In-situ preparation of ZnO-based activated carbon desulfurizer from low-rank coal

Kang YAN1,3(),Song YANG1,3,Shoujun LIU1,2,3(),Chao YANG2,Huiling FAN2,3,Ju SHANGGUAN2,3   

  1. 1.College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
    2.Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
    3.Shanxi Engineering Center of Civil Clean Fuel, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
  • Received:2021-01-08 Revised:2021-04-23 Published:2021-09-05 Online:2021-09-05
  • Contact: Shoujun LIU E-mail:1310333755@qq.com;13303460889@163.com

摘要:

将金属氧化物活性组分通过浸渍负载的方式分散到多孔载体上,是制备高活性金属氧化物脱硫剂的常用方法。然而,由于活性组分的负载易使载体孔隙率下降,导致活性组分的脱硫能力不能充分发挥。本文直接以廉价的低阶煤为原料,经过预处理后在煤中加入硝酸锌,通过物理-化学活化法一步制备ZnO基活性炭常温脱硫剂,即将活性炭的制备与活性组分的负载一步完成。研究了硝酸锌加入量、活化温度和活化时间对脱硫剂脱硫性能的影响。结果表明:当硝酸锌加入量为20%(质量),活化温度为850℃,活化时间为1 h时,脱硫剂的穿透时间为210 min,其对应的穿透硫容为71.4 mg/g,其脱硫性能是同等实验条件下商业活性炭负载ZnO脱硫剂的5.3倍,较高的脱硫性能主要归因于其发达的介孔孔隙,不仅有利于传质,而且有利于硫化产物的存储。

关键词: 原位制备, 活性炭, 脱硫剂, 吸附, H2S

Abstract:

Dispersing the metal oxide active component on the porous carrier by impregnation and loading is a common method for preparing highly active metal oxide desulfurizers. However, due to the decrease of porosity of the carrier due to the loading of active components, the desulfurization capacity of active components cannot be fully utilized. In this study, cheap low-rank coal was directly used as raw material. After pretreatment, zinc nitrate was added into the coal to prepare ZnO based activated carbon desulfurizer at room temperature in one step through physical-chemical activation method. The preparation of activated carbon and the loading of active components were completed in one step. The effects of zinc nitrate immersion amount, activation temperature and activation time on desulfurization performance of desulfurizer were studied. The results showed that when the immersion amount was 20%(mass), the activation temperature was 850℃, and the activation time was 1 h, the breakthrough time of desulfurizer was 210 min, and its sulfur capacity was 71.4 mg/g. Its desulfurization performance was 5.3 times that of commercial activated carbon supported ZnO desulfurizer under the same experimental conditions. The high desulfurization performance is mainly attributed to its developed mesoporous pores, which is not only conducive to mass transfer, but also beneficial to the storage of sulfide products.

Key words: in-situ preparation, activated carbon, desulfurizer, adsorption, hydrogen sulfide

中图分类号: 

  • O 643.3

表1

WM的工业分析及元素分析"

工业分析/%元素分析/%
VadMadAadFCadCadHadOadNadSad
31.5722.167.2439.0347.544.6116.970.610.87

图1

样品制备示意图"

图2

脱硫实验流程图"

图3

不同硝酸锌加入量所制备脱硫剂的穿透曲线(a)和对应的穿透硫容(b)"

图4

不同活化温度所制备脱硫剂的穿透曲线(a)和对应的穿透硫容(b)"

图5

不同活化时间所制备脱硫剂的穿透曲线(a)和对应的穿透硫容(b)"

图6

商业活性炭负载ZnO脱硫剂和原位制备ZnO活性炭脱硫剂的穿透曲线(a)和对应的穿透硫容(b)"

图7

AC-20和WM-850-1-20的XRD谱图"

图8

AC-20和WM-850-1-20的N2吸脱附等温线(a)及孔径分布(b)"

表2

AC-20和WM-850-1-20的织构性质"

样品比表面积/(m2/g)总孔/(cm3/g)微孔/(cm3/g)介孔/(cm3/g)介孔/总孔
AC-209130.470.370.100.21
WM-850-1-203550.250.080.170.68

图9

AC-20 (a)和WM-850-1-20 (b) 的扫描电镜图和对应的Zn元素分布图"

图10

ACE-20 (a)和WME-850-1-20 (b)的S 2p XPS谱图"

图11

ACE-20和WME-850-1-20的N2吸脱附等温线(a)及孔径分布(b)"

表3

ACE-20和WME-850-1-20的织构性质"

样品比表面积/(m2/g)总孔/(cm3/g)微孔/(cm3/g)介孔/(cm3/g)介孔/总孔
ACE-208540.440.350.090.20
WME-850-1-203020.200.050.150.75

图12

原位ZnO基活性炭脱硫剂的制备和吸附机理"

1 Rasi S, Läntelä J, Rintala J. Trace compounds affecting biogas energy utilisation—a review[J]. Energy Conversion and Management, 2011, 52(12): 3369-3375.
2 Rosso I, Galletti C, Bizzi M, et al. Zinc oxide sorbents for the removal of hydrogen sulfide from syngas[J]. Industrial & Engineering Chemistry Research, 2003, 42(8): 1688-1697.
3 Li L, Sun T H, Shu C H, et al. Low temperature H2S removal with 3-D structural mesoporous molecular sieves supported ZnO from gas stream[J]. Journal of Hazardous Materials, 2016, 311: 142-150.
4 Yang C, Wang J, Fan H L, et al. Contributions of tailored oxygen vacancies in ZnO/Al2O3 composites to the enhanced ability for H2S removal at room temperature[J]. Fuel, 2018, 215: 695-703.
5 Yang C, Wang J, Fan H L, et al. Activated carbon-assisted fabrication of cost-efficient ZnO/SiO2 desulfurizer with characteristic of high loadings and high dispersion[J]. Energy & Fuels, 2018, 32(5): 6064-6072.
6 耿强. 熔渗法制备氧化锌基脱硫剂及其常温脱硫性能研究[D]. 太原: 太原理工大学, 2019.
Geng Q. Study on preparation of zinc oxide-based desulfurizer by infiltration method and its desulfurization performance at room temperature[D]. Taiyuan: Taiyuan University of Technology, 2019.
7 胡佩雷, 徐华龙, 沈伟. 改性Zr-Na/zeolite双功能沸石脱除水溶液中氨氮和磷性能[J]. 精细化工, 2018, 35(9): 1601-1608.
Hu P L, Xu H L, Shen W. Removal of ammonium and phosphate from aqueous solution by dual-functional Zr-Na modified zeolite[J]. Fine Chemicals, 2018, 35(9): 1601-1608.
8 李灿, 马福秋, 葛春元, 等. 改性介孔二氧化硅对硫化氢的吸附研究[J]. 中国环保产业, 2018(7): 39-42.
Li C, Ma F Q, Ge C Y, et al. Study on adsorption of sulfureted hydrogen by metallic oxide modification and meso-porous silicon dioxide[J]. China Environmental Protection Industry, 2018(7): 39-42.
9 王爱民, 白妮, 张国涛, 等. 污泥-兰炭末基成型活性炭的制备及吸附性能研究[J]. 精细化工, 2017, 34(2): 207-213.
Wang A M, Bai N, Zhang G T, et al. Study on preparation of pressed active carbon based on sewage sludge and fine semi-coke and properties of adsorption[J]. Fine Chemicals, 2017, 34(2): 207-213.
10 Nguyen-Thanh D, Bandosz T J. Activated carbons with metal containing bentonite binders as adsorbents of hydrogen sulfide[J]. Carbon, 2005, 43(2): 359-367.
11 Sun F G, Liu J, Chen H C, et al. Nitrogen-rich mesoporous carbons: highly efficient, regenerable metal-free catalysts for low-temperature oxidation of H2S[J]. ACS Catalysis, 2013, 3(5): 862-870.
12 Bagreev A, Angel Menendez J, Dukhno I, et al. Bituminous coal-based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide[J]. Carbon, 2004, 42(3): 469-476.
13 Li Y M, Liu X. Activated carbon/ZnO composites prepared using hydrochars as intermediate and their electrochemical performance in supercapacitor[J]. Materials Chemistry and Physics, 2014, 148(1/2): 380-386.
14 宋华, 王璐, 张娇静, 等. 氧化铁改性活性炭的制备及其吸附脱硫性能[J]. 化工进展, 2013, 32(3): 639-644, 651.
Song H, Wang L, Zhang J J, et al. Adsorption of H2S by iron oxide modified activate carbon[J]. Chemical Industry and Engineering Progress, 2013, 32(3): 639-644, 651.
15 李芬, 张彦平, 杨莹, 等. 活性炭负载纳米ZnO的结构及常温脱除H2S的性能[J]. 硅酸盐学报, 2012, 40(6): 800-805.
Li F, Zhang Y P, Yang Y, et al. Structure of activated carbon supported with nano-ZnO and its removal performance of H2S at room temperature[J]. Journal of the Chinese Ceramic Society, 2012, 40(6): 800-805.
16 Boutillara Y, Tombeur J L, De Weireld G, et al. In-situ copper impregnation by chemical activation with CuCl2 and its application to SO2 and H2S capture by activated carbons[J]. Chemical Engineering Journal, 2019, 372: 631-637.
17 申烨华, 李文超, 陈邦, 等. 氧化锌法制备活性炭: 106115699A[P]. 2016-11-16.
Shen Y H, Li W C, Chen B, et al. Zinc oxide method for preparing activated carbon: 106115699A[P]. 2016-11-16.
18 黄文辉, 杨起, 唐修义, 等. 中国炼焦煤资源分布特点与深部资源潜力分析[J]. 中国煤炭地质, 2010, 22(5): 1-6.
Huang W H, Yang Q, Tang X Y, et al. Distribution features of coal for coking resource in China and deep part potential analysis[J]. Coal Geology of China, 2010, 22(5): 1-6.
19 邢宝林, 黄光许, 谌伦建, 等. 高品质低阶煤基活性炭的制备与表征[J]. 煤炭学报, 2013, 38(S1): 217-222.
Xing B L, Huang G X, Chen L J, et al. Preparation and characterization of high quality low-rank coal based activated carbon[J]. Journal of China Coal Society, 2013, 38(S1): 217-222.
20 王秀芳, 田勇, 张会平. 高比表面积煤质活性炭的制备与活化机理[J]. 化工学报, 2009, 60(3): 733-737.
Wang X F, Tian Y, Zhang H P. Preparation and activation mechanism of high specific surface area coal-based activated carbon[J]. CIESC Journal, 2009, 60(3): 733-737.
21 Yang C, Yang S, Fan H L, et al. Tuning the ZnO-activated carbon interaction through nitrogen modification for enhancing the H2S removal capacity[J]. Journal of Colloid and Interface Science, 2019, 555: 548-557.
22 解强, 姚鑫, 杨川, 等. 压块工艺条件下煤种对活性炭孔结构发育的影响[J]. 煤炭学报, 2015, 40(1): 196-202.
Xie Q, Yao X, Yang C, et al. Effect of coalification degree of coals on the porosity of coal-based granular activated carbon prepared by briquetting method[J]. Journal of China Coal Society, 2015, 40(1):196-202.
23 易牡丹, 丘克强. 由酚醛树脂基板CO2活化法制备高性能活性炭[J]. 应用化工, 2012, 41(7): 1127-1131.
Yi M D, Qiu K Q. Preparation of high-properties activated carbon from phenolic resin laminated board with CO2 activation[J]. Applied Chemical Industry, 2012, 41(7): 1127-1131.
24 Shi R H, Zhang Z R, Fan H L, et al. Cu-based metal-organic framework/activated carbon composites for sulfur compounds removal[J]. Applied Surface Science, 2017, 394: 394-402.
25 邵纯红, 孙曙光, 张爽, 等. 纳米CuO/ZnO去除H2S反应条件及机理研究[J]. 化学工程师, 2010, 24(2): 13-15.
Shao C H, Sun S G, Zhang S, et al. Reaction condition and mechanism research with nano CuO/ZnO to remove H2S[J]. Chemical Engineer, 2010, 24(2): 13-15.
26 Zhang R P, Wang Y, Jia M Q, et al. One-pot hydrothermal synthesis of ZnS quantum dots/graphene hybrids as a dual anode for sodium ion and lithium ion batteries[J]. Applied Surface Science, 2018, 437: 375-383.
27 Hao X Q, Wang Y C, Zhou J, et al. Zinc vacancy-promoted photocatalytic activity and photostability of ZnS for efficient visible-light-driven hydrogen evolution[J]. Applied Catalysis B: Environmental, 2018, 221: 302-311.
28 Yang C, Wang Y S, Fan H L, et al. Bifunctional ZnO-MgO/activated carbon adsorbents boost H2S room temperature adsorption and catalytic oxidation[J]. Applied Catalysis B: Environmental, 2020, 266: 118674.
29 Brazhnyk D V, Zaitsev Y P, Bacherikova I V, et al. Oxidation of H2S on activated carbon KAU and influence of the surface state[J]. Applied Catalysis B: Environmental, 2007, 70(1/2/3/4): 557-566.
30 谭小耀, 吴迪镛, 袁权. 浸渍活性炭脱硫过程中孔结构及气体湿度的影响[J]. 化工学报, 1997, 48(2): 237-240.
Tan X Y, Wu D Y, Yuan Q. Influence of the pore structure and gas humidity on desulfurization by impregnated activated carbon[J]. Journal of Chemical Industry and Engineering (China), 1997, 48(2): 237-240.
31 李芬. 纳米锌基脱硫剂室温脱硫效能及再生研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.
Li F. Study on desulfurization performance at ambient temperature and regeneration of nanocrystalline zinc-base sorbent[D]. Harbin: Harbin Institute of Technology, 2007.
32 Wang L J, Fan H L, Shangguan J, et al. Design of a sorbent to enhance reactive adsorption of hydrogen sulfide[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 21167-21177.
[1] 吴中杰, 刘则艳, 谢连科, 崔美, 黄仁亮. 聚偏氟乙烯膜亲水改性及其乳液分离与重金属吸附应用[J]. 化工学报, 2021, 72(S1): 421-429.
[2] 吴俊晔, 葛天舒, 吴宣楠, 代彦军, 王如竹. 基于吸附剂/木浆纤维纸耦合材料的空气净化[J]. 化工学报, 2021, 72(S1): 520-529.
[3] 罗伟莉, 王雯雯, 潘权稳, 葛天舒, 王如竹. 基于活性碳纤维毡复合吸附剂的储热性能[J]. 化工学报, 2021, 72(S1): 554-559.
[4] 温怡静, 张博, 陈晓霏, 赵思洋, 周欣, 黄艳, 李忠. 多孔炭吸附剂的乙烯-乙烷选择性反转机制[J]. 化工学报, 2021, 72(9): 4768-4774.
[5] 彭蕾, 姜岩, 夏如馨. 微生物修复Cr(Ⅵ)污染作用机制及研究进展[J]. 化工学报, 2021, 72(9): 4458-4468.
[6] 马生贵, 田博文, 周雨薇, 陈琳, 江霞, 高涛. 氮掺杂Stone-Wales缺陷石墨烯吸附H2S的密度泛函理论研究[J]. 化工学报, 2021, 72(9): 4496-4503.
[7] 王伟, 钱伟鑫, 马宏方, 应卫勇, 张海涛. 吡啶修饰H-MOR上二甲醚羰基化吸附-扩散理论研究[J]. 化工学报, 2021, 72(9): 4786-4795.
[8] 李媛, 张飞飞, 王丽, 杨江峰, 李立博, 李晋平. MIL-101Cr-F/Cl用于N2O的捕集研究[J]. 化工学报, 2021, 72(9): 4759-4767.
[9] 邓超和, 王佳韵, 李金凤, 刘业凤, 王如竹. 可低温驱动的凝胶复合吸附剂的制备及吸/脱附性能研究[J]. 化工学报, 2021, 72(8): 4401-4409.
[10] 戴琼斌, 刘宏斌, 夏启斌, 周欣, 李忠. 一种新的颗粒炭材料的制备及其高效分离甲烷氮气性能[J]. 化工学报, 2021, 72(8): 4196-4203.
[11] 冯宇, 张鑫, 张曼, 王建成, 阎智锋, 李甫, 费鹏飞, 卢建军, 米杰. 静电纺丝纤维对煤基气体污染物脱除研究进展[J]. 化工学报, 2021, 72(8): 3933-3945.
[12] 韩笑,陈雨亭,苏宝根,鲍宗必,张治国,杨亦文,任其龙,杨启炜. 己烷异构体吸附分离材料研究进展[J]. 化工学报, 2021, 72(7): 3445-3465.
[13] 梁苏卓成, 姬国勋, 孙新利, 王波, 张仕通, 代星. 硅杂原子提升冠醚对锂离子络合能力的机理理论研究[J]. 化工学报, 2021, 72(6): 3149-3159.
[14] 王琪, 赵有璟, 刘洋, 王云昊, 王敏, 项顼. 高镁锂比盐湖镁锂分离与锂提取技术研究进展[J]. 化工学报, 2021, 72(6): 2905-2921.
[15] 张瑞, 陆旗玮, 林森, 于建国. 铝系成型锂吸附剂性能测试评价与对比[J]. 化工学报, 2021, 72(6): 3053-3062.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANGLixin,KurichiKumar,A.S.Mujumdar. 干燥室中不同液体的喷雾蒸发对流动、传热、传质性能的影响[J]. CIESC Journal, 2004, 12(6): 737 -743 .
[2] 余钊圣, 邵雪明, R.Tanner. 二维环形Couette设备中剪切引起的二维圆形固粒迁移的动态数值模拟[J]. CIESC Journal, 2007, 15(3): 333 -338 .
[3] 蒋国强, 朱德权, 昝佳, 丁富新. 电致孔经皮给药:表面活性剂对孔道存在时间和药物传输的影响[J]. CIESC Journal, 2007, 15(3): 397 -402 .
[4] 夏春明, 郑建荣, J.Howell. 基于非负频谱分解的厂级多重振荡源的分离研究[J]. CIESC Journal, 2007, 15(3): 353 -360 .
[5] 张腾云, 罗京莉, K.Chuang, 钟理. 滴流床中乙醛液相氧化合成过氧乙酸新工艺[J]. CIESC Journal, 2007, 15(3): 320 -325 .
[6] 刘先桥, 官月平, 邢建民, 马志亚, 刘会洲. 带环氧基的超顺磁性高分子微球的制备及其性能表征[J]. CIESC Journal, 2003, 11(6): 731 -735 .
[7] 吉远辉, 吉晓燕, 冯新, 刘畅, 吕玲红, 陆小华. CO2-H2O和CO2-H2O-NaCl 体系的相平衡研究进展[J]. CIESC Journal, 2007, 15(3): 439 -448 .
[8] 周立芳, 邵之江. 具有软硬约束的混合权系数最小二乘稳定预测控制算法[J]. CIESC Journal, 2003, 11(5): 565 -570 .
[9] 张秀莉, 张卫东, 郝新敏, 张慧峰, 张泽廷, 张建春. PTFE多孔膜气体渗透数学模型和膜孔结构的影响[J]. CIESC Journal, 2003, 11(4): 383 -387 .
[10] 袁俊杰, 周树学, 廖建和, 武利民. 有机无机杂化物作乳化剂的苯丙乳液制备及其性能表征[J]. CIESC Journal, 2003, 11(4): 483 -488 .