化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 266-277.doi: 10.11949/0438-1157.20210153

• 流体力学与传递现象 • 上一篇    下一篇

多物理场耦合模拟微波蒸馏反应器:升温和沸腾过程

赵海峰(),李洪,李鑫钢,高鑫()   

  1. 天津大学化工学院,精馏技术国家工程研究中心,天津 300350
  • 收稿日期:2021-01-22 修回日期:2021-03-01 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 高鑫 E-mail:haifengtju@163.com;gaoxin@tju.edu.cn
  • 作者简介:赵海峰(1997—),男,硕士研究生,haifengtju@163.com
  • 基金资助:
    国家自然科学基金项目(21878219)

Numerical simulation of microwave distillation reactor with multi-physical field coupling: heating and boiling processes

ZHAO Haifeng(),LI Hong,LI Xingang,GAO Xin()   

  1. School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Tianjin University, Tianjin 300350, China
  • Received:2021-01-22 Revised:2021-03-01 Published:2021-06-20 Online:2021-06-20
  • Contact: GAO Xin E-mail:haifengtju@163.com;gaoxin@tju.edu.cn

摘要:

使用COMSOL Multiphysics软件建立了耦合电磁场、流体流动、传热以及物质传输的多物理场模型用于模拟蒸馏型反应器的微波能量利用过程,探究了蒸馏反应器中水负载在微波能辐射作用下从升温至沸腾过程,阐明了在升温阶段,样品温度呈上下层分布,上层温度较高,最大温差达20 K,自然对流的产生改善了温度分布的不均匀性;在沸腾阶段,由于下层温度较低,沸腾现象有延迟,气泡的产生消除了部分过热,其中表面蒸发量更大,最大时约为内部蒸发量的3倍,与此同时湍流现象明显改善了温度均匀性。探究了馈入功率对全沸腾状态的影响,揭示了全沸腾状态的最终温度取决于馈入功率和蒸发损耗功率的相对大小。研究结果可为微波辅助分离、反应等化工过程及装备设计提供理论基础与借鉴。

关键词: 计算流体力学, 两相流, 蒸发, 微波, 传热

Abstract:

A coupled multi-physical field model of electromagnetic field, fluid flow, heat transfer and species transport is developed in COMSOL Multiphysics to simulate the microwave distillation reactor. The thermal evolution, phase change, temperature distribution of water load under microwave irradiation are investigated. The whole process includes the water load heated from 293 K to boiling. The simulation results show that the temperature of the water sample is hierarchically distributed during the microwave heating stage, with the temperature of the upper section of the reactor being significantly higher than that of the lower section. At the same time, the generation of natural convection improves the temperature uniformity. During the microwave boiling stage, the boiling will not start immediately due to that the lower region of the sample with nucleation sites does not reach the saturation temperature. The accumulation of heat within the reactor leads to overheating in the water load. However, it is worth noting that the free surface of the water load maintains at the saturation temperature due to the high evaporation rate. After the temperature of the lower region of the reactor reaches the saturation temperature, the turbulence caused by the boiling bubbles improves the temperature uniformity, while the boiling eliminates this overheating phenomenon to a certain extend. Furthermore, the surface evaporation plays a major role in the dissipation of superheat compared to internal boiling evaporation. The final temperature depends on the relative value of the heat energy converted by microwave and the evaporative dissipation energy. This study can provide theoretical guidance for microwave-assisted separation, reaction and other chemical processes.

Key words: computational fluid dynamics, two-phase flow, evaporation, microwave, heat transfer

中图分类号: 

  • TQ 02

图1

微波蒸馏反应器加热过程"

图2

微波辅助蒸馏反应器装置三维物理模型"

表1

腔体和波导内网格无关性检验"

最大网格尺寸网格单元质量温度/K
最高温度最低温度
h/100.6618294.61352.60
h/80.6611294.62352.71
h/60.6598294.63352.29
h/50.6593294.66352.00
h/40.6588294.77349.07

图3

样品内网格无关性检验"

图4

网格质量分布"

图5

模拟与试验温度对比"

图6

气相体积分数随管道长度的变化"

图7

腔体和反应器内电场分布"

图8

温度和电阻损耗功率密度随时间的变化"

图9

反应器中水负载温度和电场均匀性随时间的变化"

图10

蒸发损耗功率密度分布"

表2

表面蒸发损耗功率随时间的变化"

时间/s蒸发损耗功率/W
52.10
203.15
354.05
505.37
757.88

图11

初始沸腾阶段温度分布"

图12

全沸腾阶段温度分布"

图13

气相体积分数分布"

图14

蒸发损耗功率随时间的变化"

图15

馈入功率为700 W时全沸腾状态下平均温度随时间的变化"

图16

馈入功率为500 W时全沸腾状态下平均温度随时间的变化"

图17

馈入功率为300 W时全沸腾状态下平均温度随时间的变化"

1 Rosa R, Veronesi P, Leonelli C. A review on combustion synthesis intensification by means of microwave energy [J]. Chemical Engineering and Processing: Process Intensification, 2013, 71: 2-18.
2 Li H, Zhao Z Y, Xiouras C, et al. Fundamentals and applications of microwave heating to chemicals separation processes [J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109316.
3 Chen J J, Pitchai K, Jones D, et al. Effect of decoupling electromagnetics from heat transfer analysis on prediction accuracy and computation time in modeling microwave heating of frozen and fresh mashed potato [J]. Journal of Food Engineering, 2015, 144: 45-57.
4 Sturm G S J, Verweij M D, van Gerven T, et al. On the effect of resonant microwave fields on temperature distribution in time and space [J]. International Journal of Heat and Mass Transfer, 2012, 55(13/14): 3800-3811.
5 Chen M, Siochi E J, Ward T C, et al. Basic ideas of microwave processing of polymers [J]. Polymer Engineering & Science, 1993, 33(17): 1092-1109.
6 Gerbec J A, Magana D, Washington A, et al. Microwave-enhanced reaction rates for nanoparticle synthesis [J]. Journal of the American Chemical Society, 2005, 127(45): 15791-15800.
7 Li H, Shi S L, Lin B Q, et al. A fully coupled electromagnetic, heat transfer and multiphase porous media model for microwave heating of coal [J]. Fuel Processing Technology, 2019, 189: 49-61.
8 Mitic A, Gernaey K V. Process intensification tools in the small-scale pharmaceutical manufacturing of small molecules [J]. Chemical Engineering & Technology, 2015, 38(10): 1699-1712.
9 Pinela J, Prieto M A, Barreiro M F, et al. Optimization of microwave-assisted extraction of hydrophilic and lipophilic antioxidants from a surplus tomato crop by response surface methodology [J]. Food and Bioproducts Processing, 2016, 98: 283-298.
10 Shi J L, Pan Z L, McHugh T H, et al. Drying and quality characteristics of fresh and sugar-infused blueberries dried with infrared radiation heating [J]. LWT - Food Science and Technology, 2008, 41(10): 1962-1972.
11 Sosnik A, Gotelli G, Abraham G A. Microwave-assisted polymer synthesis (MAPS) as a tool in biomaterials science: how new and how powerful [J]. Progress in Polymer Science, 2011, 36(8): 1050-1078.
12 Dudley G B, Richert R, Stiegman A E. On the existence of and mechanism for microwave-specific reaction rate enhancement [J]. Chemical Science, 2015, 6(4): 2144-2152.
13 Khan N R, Rathod V K. Microwave assisted enzymatic synthesis of speciality esters: a mini - review [J]. Process Biochemistry, 2018, 75: 89-98.
14 De Bruyn M, Budarin V L, Sturm G S J, et al. Subtle microwave-induced overheating effects in an industrial demethylation reaction and their direct use in the development of an innovative microwave reactor [J]. Journal of the American Chemical Society, 2017, 139(15): 5431-5436.
15 Arabi M, Amini M M, Abedini M, et al. Esterification of phthalic anhydride with 1-butanol and 2-ethylhexanol catalyzed by heteropolyacids [J]. Journal of Molecular Catalysis A: Chemical, 2003, 200(1/2): 105-110.
16 Li H, Meng Y, Shu D D, et al. Breaking the equilibrium at the interface: microwave-assisted reactive distillation (MARD) [J]. Reaction Chemistry & Engineering, 2019, 4(4): 688-694.
17 Gao X, Liu X S, Li X G, et al. Continuous microwave-assisted reactive distillation column: pilot-scale experiments and model validation [J]. Chemical Engineering Science, 2018, 186: 251-264.
18 Lin B Q, Li H, Chen Z W, et al. Sensitivity analysis on the microwave heating of coal: a coupled electromagnetic and heat transfer model [J]. Applied Thermal Engineering, 2017, 126: 949-962.
19 Raaholt B W, Isaksson S, Hamberg L, et al. Continuous tubular microwave heating of homogeneous foods: evaluation of heating uniformity [J]. Journal of Microwave Power and Electromagnetic Energy, 2016, 50(1): 43-65.
20 Topcam H, Karatas O, Erol B, et al. Effect of rotation on temperature uniformity of microwave processed low - high viscosity liquids: a computational study with experimental validation [J]. Innovative Food Science & Emerging Technologies, 2020, 60: 102306.
21 Chemat F, Esveld E. Microwave super-heated boiling of organic liquids: origin, effect and application [J]. Chemical Engineering & Technology, 2001, 24(7): 735-744.
22 李洪, 崔俊杰, 李鑫钢, 等. 微波场强化化工分离过程研究进展[J]. 化工进展, 2016, 35(12): 3735-3745.
Li H, Cui J J, Li X G, et al. Recent developments in microwave-assisted chemical separation processes [J]. Chemical Industry and Engineering Progress, 2016, 35(12): 3735-3745.
23 Pitchai K, Chen J, Birla S, et al. A microwave heat transfer model for a rotating multi-component meal in a domestic oven: development and validation [J]. Journal of Food Engineering, 2014, 128: 60-71.
24 刘佳惠. 微波诱导蒸发强化分离的装备与过程研究[D]. 天津: 天津大学, 2018.
Liu J H. Study on equipment and process of microwave-induced evaporation and intensified separation [D]. Tianjin: Tianjin University, 2018.
25 Chen J J, Pitchai K, Birla S, et al. Heat and mass transport during microwave heating of mashed potato in domestic oven — model development, validation, and sensitivity analysis [J]. Journal of Food Science, 2014, 79(10): E1991-E2004.
26 Looyenga H. Dielectric constants of heterogeneous mixtures [J]. Physica, 1965, 31(3): 401-406.
27 Nigam M S. Numerical simulation of buoyant mixture flows [J]. International Journal of Multiphase Flow, 2003, 29(6): 983-1015.
28 Bo T. CFD homogeneous mixing flow modelling to simulate subcooled nucleate boiling flow[R]. SAETechnical Paper 2004-01-1512. 2004.
29 Santos T, Valente M A, Monteiro J, et al. Electromagnetic and thermal history during microwave heating [J]. Applied Thermal Engineering, 2011, 31(16): 3255-3261.
30 Cha-Um W, Rattanadecho P, Pakdee W. Experimental and numerical analysis of microwave heating of water and oil using a rectangular wave guide: influence of sample sizes, positions, and microwave power [J]. Food and Bioprocess Technology, 2011, 4(4): 544-558.
31 Zeitoun O, Shoukri M. Axial void fraction profile in low pressure subcooled flow boiling [J]. International Journal of Heat and Mass Transfer, 1997, 40(4): 869-879.
32 Zhao P Y, Gan W W, Feng C Q, et al. Multiphysics analysis for unusual heat convection in microwave heating liquid [J]. AIP Advances, 2020, 10(8): 085201.
33 Chen F Y, Warning A D, Datta A K, et al. Susceptors in microwave cavity heating: modeling and experimentation with a frozen pie [J]. Journal of Food Engineering, 2017, 195: 191-205.
34 Chemat F, Esveld E. Microwave super-heated boiling of organic liquids: origin, effect and application [J]. Chemical Engineering & Technology, 2001, 24(7): 735-744.
[1] 李凡, 陆高锋, 马光柏, 翟晓强, 杨顺法. 纵向涡强化圆管内换热的数值模拟及性能分析[J]. 化工学报, 2021, 72(S1): 120-126.
[2] 林恩承, 王文, 匡以武, 石玉美, 耑锐, 孙礼杰. 低温输运管道预冷过程的气液两相数值分析[J]. 化工学报, 2021, 72(S1): 153-160.
[3] 马秋鸣, 聂磊, 潘权稳, 山訸, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器换热性能[J]. 化工学报, 2021, 72(S1): 170-177.
[4] 匡以武, 孙礼杰, 王文, 耑锐, 张亮. 基于双流体模型的液氢流动沸腾数值模拟[J]. 化工学报, 2021, 72(S1): 184-193.
[5] 山訸, 马秋鸣, 潘权稳, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器冷却液侧传热与流动性能仿真[J]. 化工学报, 2021, 72(S1): 194-202.
[6] 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209.
[7] 张亚爽, 李洪, 从海峰, 韩红明, 李鑫钢, 高鑫. 微波强化液桥式螺旋降膜蒸发器数值模拟[J]. 化工学报, 2021, 72(S1): 227-235.
[8] 赵文一, 匡以武, 王文, 张红星, 苗建印. 水平管内冷凝流动的稳定性[J]. 化工学报, 2021, 72(S1): 257-265.
[9] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[10] 林石泉, 赵雅鑫, 吕中原, 赖展程, 胡海涛. 亲疏水性对泡沫金属池沸腾换热特性的影响[J]. 化工学报, 2021, 72(S1): 295-301.
[11] 黄锟腾, 陈健勇, 陈颖, 罗向龙, 梁颖宗. 气液分离技术的研究现状[J]. 化工学报, 2021, 72(S1): 30-41.
[12] 王玲玥, 朱进容, 王从乐, 吕辉, 成纯富, 张金业. 圆管束中导流器对其自然对流换热的影响[J]. 化工学报, 2021, 72(S1): 310-317.
[13] 顾潇, 邹慧明, 韩欣欣, 唐明生, 田长青. 基于余热回收的电动客车喷射补气热泵的制热性能[J]. 化工学报, 2021, 72(S1): 326-335.
[14] 王飞, 王建民, 邵双全. 数据中心冷却系统多级传热温差分析[J]. 化工学报, 2021, 72(S1): 348-355.
[15] 赵浚哲, 刘舫辰, 李元鲁, 杜文静. 低Reynolds数下内置三棱柱通道的流动与传热特性[J]. 化工学报, 2021, 72(S1): 382-389.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 祝贵兵, 彭永臻, 王淑莹, 左金龙, 王亚宜, 郭建华. 分段进水生物脱氮工艺稳态模型的开发与试验评价[J]. CIESC Journal, 2007, 15(3): 411 -417 .
[2] 司徒粤, 胡剑峰, 黄洪, 傅和青, 曾汉维, 陈焕钦. 新型环氧大豆油增韧酚醛树脂的合成与性质[J]. CIESC Journal, 2007, 15(3): 418 -423 .
[3] 屈玲, 佟大明, 吕志平, 萧墉壮, 窦涛. 苯乙烯在MCM-41介孔材料中聚合的研究[J]. CIESC Journal, 2003, 11(6): 677 -680 .
[4] 刘文红, 郭烈锦, 吴铁军, 张西民. 水平长直管内油水两相流流动特性实验研究[J]. CIESC Journal, 2003, 11(5): 491 -496 .
[5] 周彩荣, 章亚东, 蒋登高. 1,2-环己二醇的焓和热容数据研究[J]. CIESC Journal, 2003, 11(5): 598 -600 .
[6] 刘国柱, 吴玉龙, 任永利, 米镇涛. 丙烯在仲丁醇-水溶液中溶解度的测定与关联[J]. CIESC Journal, 2003, 11(4): 452 -455 .
[7] 李天成, 姜斌, 冯霞, 王大为, 袁绍军, 李鑫钢. 微电解-生物膜复合工艺净化含重金属离子的有机废水[J]. CIESC Journal, 2003, 11(2): 146 -150 .
[8] 李长海, 史鹏飞, 余政哲, 石宏仁. 2-萘磺酸/硫酸在弱碱性树脂上的吸附平衡研究[J]. CIESC Journal, 2003, 11(1): 38 -41 .
[9] 石冰洁, 张卫东, 张泽廷, 于恩平. 超临界流体萃取塔的流体力学和传质性能[J]. CIESC Journal, 2002, 10(6): 696 -700 .
[10] 刘春江, 袁希钢. 利用计算流体力学方法研究精馏塔板上的液相流动[J]. CIESC Journal, 2002, 10(5): 522 -528 .