化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 227-235.doi: 10.11949/0438-1157.20210154
ZHANG Yashuang(),LI Hong,CONG Haifeng,HAN Hongming,LI Xingang,GAO Xin(
)
摘要:
微波加热薄膜蒸发技术在促进极性/非极性混合物分离领域潜力巨大,但仍面临着能源利用效率低和加热不均的挑战,而电场分布不均是其根本原因,但影响电场分布的因素十分复杂且不可控,因此,从蒸发器结构及流体流动形式视角出发可为解决微波能高效利用的瓶颈提供新思路。为此本文提出了液桥式螺旋降膜蒸发器,通过COMSOL建立三维模型并模拟计算了微波能强化蒸发器上的螺旋降膜流动与蒸发过程,以蒸发率和温度变异系数作为评价指标,探究液膜厚度、螺距、蒸发器直径、流量以及时间对微波能利用效率的影响规律,研究结果表明该种结构在一定微波入射功率下,液膜蒸发率可达29.26%,温度变异系数降至0.0867,为微波能强化蒸发分离装置的设计提供了依据。
中图分类号:
1 | Stefanidis G D, Muñoz A N, Sturm G S J, et al. A helicopter view of microwave application to chemical processes: reactions, separations, and equipment concepts [J]. Reviews in Chemical Engineering, 2014, 30(3): 233-259. |
2 | Wei W, Shao Z S, Zhang Y Y, et al. Fundamentals and applications of microwave energy in rock and concrete processing — a review [J]. Applied Thermal Engineering, 2019, 157: 113751. |
3 | Yu S Z, Duan Y, Mao X N, et al. Pyrolysis of methyl ricinoleate by microwave-assisted heating coupled with atomization feeding [J]. Journal of Analytical and Applied Pyrolysis, 2018, 135: 176-183. |
4 | Rattanadecho P, Suwannapum N, Watanasungsuit A, et al. Drying of dielectric materials using a continuous microwave belt drier (case study: ceramics and natural rubber) [J]. Journal of Manufacturing Science and Engineering, 2007, 129(1): 157-163. |
5 | Meera G, Rohit K R, Saranya S, et al. Microwave assisted synthesis of five membered nitrogen heterocycles [J]. RSC Advances, 2020, 10(59): 36031-36041. |
6 | Altman E, Stefanidis G D, van Gerven T, et al. Process intensification of reactive distillation for the synthesis of n-propyl propionate: the effects of microwave radiation on molecular separation and esterification reaction [J]. Industrial & Engineering Chemistry Research, 2010, 49(21): 10287-10296. |
7 | Chronopoulos T, Fernandez-Diez Y, Maroto-Valer M M, et al. CO2 desorption via microwave heating for post-combustion carbon capture [J]. Microporous and Mesoporous Materials, 2014, 197: 288-290. |
8 | Proestos C, Komaitis M. Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds [J]. LWT - Food Science and Technology, 2008, 41(4): 652-659. |
9 | Jacotet-Navarro M, Rombaut N, Fabiano-Tixier A S, et al. Ultrasound versus microwave as green processes for extraction of rosmarinic, carnosic and ursolic acids from rosemary [J]. Ultrasonics Sonochemistry, 2015, 27: 102-109. |
10 | Gao X, Shu D D, Li X G, et al. Improved film evaporator for mechanistic understanding of microwave-induced separation process [J]. Frontiers of Chemical Science and Engineering, 2019, 13(4): 759-771. |
11 | Li H, Liu J H, Li X G, et al. Microwave-induced polar/nonpolar mixture separation performance in a film evaporation process [J]. AIChE Journal, 2019, 65(2): 745-754. |
12 | 黄卡玛, 杨晓庆. 微波加快化学反应中非热效应研究的新进展[J]. 自然科学进展, 2006, 16(3): 273-279. |
Huang K M, Yang X Q. New progress in research on non-thermal effects in microwave accelerated chemical reaction [J]. Process in Natural Science, 2006, 16(3): 273-279. | |
13 | Ayappa K G, Brandon S, Derby J J, et al. Microwave driven convection in a square cavity [J]. AIChE Journal, 1994, 40(7): 1268-1272. |
14 | Santos T, Valente M A, Monteiro J, et al. Electromagnetic and thermal history during microwave heating [J]. Applied Thermal Engineering, 2011, 31(16): 3255-3261. |
15 | Tang Z M, Huang K M, Liao Y H, et al. Study on stability of electric field in multimode microwave heating cavity [J]. International Journal of Applied Electromagnetics and Mechanics, 2016, 50(2): 321-330. |
16 | Sturm G S J, Verweij M D, Gerven T V, et al. On the parametric sensitivity of heat generation by resonant microwave fields in process fluids [J]. International Journal of Heat and Mass Transfer, 2013, 57(1): 375-388. |
17 | Gao X, Liu X S, Yan P, et al. Numerical analysis and optimization of the microwave inductive heating performance of water film [J]. International Journal of Heat and Mass Transfer, 2019, 139: 17-30. |
18 | Pham N D, Khan M I H, Karim M A. A mathematical model for predicting the transport process and quality changes during intermittent microwave convective drying [J]. Food Chemistry, 2020, 325: 126932. |
19 | Sebera V, Nasswettrová A, Nikl K. Finite element analysis of mode stirrer impact on electric field uniformity in a microwave applicator [J]. Drying Technology, 2012, 30(13): 1388-1396. |
20 | 曹湘琪, 姚斌, 郑勤红, 等. 凹弧面内筒壁对微波反应器加热效率及均匀性的影响[J]. 现代制造工程, 2016, (9): 13-16, 38. |
Cao X Q, Yao B, Zheng Q H, et al. Influence of the cylindrical inner wall for concave cambered surface to microwave heating efficiency and uniformity [J]. Modern Manufacturing Engineering, 2016, (9): 13-16, 38. | |
21 | Feng H, Yin Y, Tang J M. Microwave drying of food and agricultural materials: basics and heat and mass transfer modeling [J]. Food Engineering Reviews, 2012, 4(2): 89-106. |
22 | Nishioka M, Miyakawa M, Daino Y, et al. Single-mode microwave reactor used for continuous flow reactions under elevated pressure [J]. Industrial & Engineering Chemistry Research, 2013, 52(12): 4683-4687. |
23 | 李伊帆, 王凤霞, 解田, 等. 双端口旋转对微波加热均匀性和互耦的影响 [J]. 太赫兹科学与电子信息学报, 2020, 18(2): 264-268, 277. |
Li Y F, Wang F X, Xie T, et al. Influence of dual port rotation on microwave heating uniformity and mutual coupling [J]. Journal of Terahertz Science and Electronic Information Technology, 2020, 18(2): 264-268, 277. | |
24 | 王永福, 周荣琪, 段占庭. 二元混合物降膜蒸发的数值模拟[J]. 化工学报, 2002, 53(9): 946-950. |
Wang Y F, Zhou R Q, Duan Z T. Numerical simulation of falling film evaporation of binary mixture [J]. Journal of Chemical Industry and Engineering (China), 2002, 53(9): 946-950. | |
25 | Yeong S P, Law M C, Lee C C V, et al. Modelling batch microwave heating of water [J]. IOP Conference Series: Materials Science and Engineering, 2017, 217: 012035. |
26 | Wu Y Y. Simultaneous heat and mass transfer in laminar falling film on the outside of a circular tube [J]. International Journal of Heat and Mass Transfer, 2016, 93: 1089-1099. |
27 | Lee G L, Law M C, Lee V C C. Numerical modelling of liquid heating and boiling phenomena under microwave irradiation using OpenFOAM [J]. International Journal of Heat and Mass Transfer, 2020, 148: 119096. |
28 | Carwile L C, Hoge H J. Thermal conductivity of Pyrex glass: selected values [R]. Defense Technical Information Center, 1966. |
29 | Li H, Shi S L, Lin B Q, et al. A fully coupled electromagnetic, heat transfer and multiphase porous media model for microwave heating of coal [J]. Fuel Processing Technology, 2019, 189: 49-61. |
30 | 卿培亮. 微波加热管内降膜蒸发过程的传热研究[D]. 成都: 四川大学, 2006. |
Qing P L. Investigation on heat transfer of falling film evaporation by microwave heating [D]. Chengdu: Sichuan University, 2006. | |
31 | Cong H F, Zhao Z Y, Li X G, et al. Liquid-bridge flow in the channel of helical string and its application to gas-liquid contacting process [J]. AIChE Journal, 2018, 64(9): 3360-3368. |
32 | Kent S, Kent E F. Microwave heating of dielectric lossy objects [J]. Journal of Microwave Power and Electromagnetic Energy, 2002, 37(2): 63-71. |
[1] | 徐玲玲, 蒲亮. 基于热短路问题的仿生地埋管换热器模拟[J]. 化工学报, 2021, 72(S1): 134-139. |
[2] | 郝刚卫, 刘晔, 晏刚, 鱼剑琳. 串并联风冷冰箱性能优化[J]. 化工学报, 2021, 72(S1): 178-183. |
[3] | 山訸, 马秋鸣, 潘权稳, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器冷却液侧传热与流动性能仿真[J]. 化工学报, 2021, 72(S1): 194-202. |
[4] | 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209. |
[5] | 赵海峰, 李洪, 李鑫钢, 高鑫. 多物理场耦合模拟微波蒸馏反应器:升温和沸腾过程[J]. 化工学报, 2021, 72(S1): 266-277. |
[6] | 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294. |
[7] | 海鹏, 李振兴, 李珂, 黄红梅, 郑文帅, 高新强, 戴巍, 沈俊. 多层主动磁回热器的仿真优化[J]. 化工学报, 2021, 72(S1): 302-309. |
[8] | 王玲玥, 朱进容, 王从乐, 吕辉, 成纯富, 张金业. 圆管束中导流器对其自然对流换热的影响[J]. 化工学报, 2021, 72(S1): 310-317. |
[9] | 候召宁, 王林, 闫晓娜, 李修真, 王占伟, 梁坤峰. 多超声振子作用下气泡动力学数值模拟[J]. 化工学报, 2021, 72(S1): 362-370. |
[10] | 宋粉红, 王伟, 陈奇成, 范晶. 电场作用下双液滴聚合特性[J]. 化工学报, 2021, 72(S1): 371-381. |
[11] | 赵浚哲, 刘舫辰, 李元鲁, 杜文静. 低Reynolds数下内置三棱柱通道的流动与传热特性[J]. 化工学报, 2021, 72(S1): 382-389. |
[12] | 李腾飞, 缪赟, 杨柳, 王龙耀, 朱铧丞. 微波强化Y型分子筛离子交换技术[J]. 化工学报, 2021, 72(S1): 406-412. |
[13] | 陈建业, 丁月, 吴钊, 禹云星, 邵双全. 带涡流管的新型加氢流程数值研究[J]. 化工学报, 2021, 72(S1): 461-466. |
[14] | 蒋迎花, 韩儒松, 康丽霞, 刘永忠. 厂际氢气网络多周期集成的分步优化方法[J]. 化工学报, 2021, 72(9): 4816-4829. |
[15] | 刘辰玥, 郑通, 刘渊博, 温荣福, 陈凯, 马学虎. 异形仿生换热器壳侧对流换热的高效低阻特性研究[J]. 化工学报, 2021, 72(9): 4511-4522. |
|