化工学报 ›› 2021, Vol. 72 ›› Issue (8): 4255-4266.doi: 10.11949/0438-1157.20210224

• 表面与界面工程 • 上一篇    下一篇

润湿性图案表面上的液滴侧向弹跳行为

任辉1(),王宏1,2(),朱恂1,2,陈蓉1,2,廖强1,2,丁玉栋1,2   

  1. 1.重庆大学工程热物理研究所,重庆 400030
    2.低品位能源利用技术及系统教育部重点实验室,重庆 400030
  • 收稿日期:2021-02-03 修回日期:2021-04-19 出版日期:2021-08-05 发布日期:2021-08-05
  • 通讯作者: 王宏 E-mail:renhuirl@163.com;hongwang@cqu.edu.cn
  • 作者简介:任辉(1996—),女,硕士研究生,renhuirl@163.com
  • 基金资助:
    国家自然科学基金项目(51676022)

Lateral bouncing behavior of droplets on the wettability-patterned surface

Hui REN1(),Hong WANG1,2(),Xun ZHU1,2,Rong CHEN1,2,Qiang LIAO1,2,Yudong DING1,2   

  1. 1.Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
    2.Key Laboratory of Low-Grade Energy Utilization Technologies & Systems, Ministry of Education, Chongqing University, Chongqing 400030, China
  • Received:2021-02-03 Revised:2021-04-19 Published:2021-08-05 Online:2021-08-05
  • Contact: Hong WANG E-mail:renhuirl@163.com;hongwang@cqu.edu.cn

摘要:

表面润湿性不均匀会影响液滴撞击表面后的运动行为。通过液滴撞击润湿性图案表面,利用疏水表面上的亲水条纹可以实现液滴的侧向弹跳。实验过程中探究了不同的表面性质与撞击条件对液滴侧向弹跳运动行为的影响,为实现液滴定向弹跳提供了新的思路。实验结果表明,润湿性图案主要影响液滴撞击表面后的回缩过程,并且图案尺寸、液滴速度、液滴撞击位置均会对液滴撞击表面后的分裂以及侧向弹跳产生影响。通过实验获得了上述参数对液滴侧向弹跳的质量和距离的影响规律。

关键词: 表面, 多相流, 流体动力学, 液滴撞击, 侧向弹跳

Abstract:

The non-uniform surface wettability can affect the movement behavior of the droplet after droplet impacts the surface. When the droplet impacts the wettability-patterned surface, the lateral bounce of the droplet can be achieved by using the hydrophobic surface decorated with ahydrophilic stripe. During the experiment, the influence of different surface properties and impact conditions on the lateral bounce behavior of the droplet was explored, which provided a new idea for the realization of the directional bounce of the droplet. The results showed that the wettability pattern mainly affected the retraction process of the droplet after it impacted the surface. And the pattern size, droplet velocity, and droplet impact position can affect the splitting and lateral bounce of the impacting droplet. Through experiments, the influence of the above parameters on the mass and distance of the droplet's lateral bounce is obtained.

Key words: surface, multiphase flow, hydrodynamics, droplet impact, lateral bounce

中图分类号: 

  • TQ 021.4

图1

润湿性图案表面"

图2

实验系统及实验参数设置示意图"

表1

实验参数设置"

条纹尺寸针管高度偏移距离N
9 mm×0.3 mm10~60 mm1 mm
2 mm
9 mm×0.5 mm
3 mm

图3

液滴撞击表面后的不同形态演变"

图4

x方向上液滴两侧的速度变化曲线(亲水条纹9 mm×0.3 mm,撞击偏移距离2 mm,撞击高度20 mm)"

图5

数值计算模型及验证"

图6

撞击液滴内部的压力分布云图(亲水条纹9 mm×0.3 mm,撞击偏移距离2 mm、撞击高度20 mm)"

图7

液滴撞击表面不同位置分裂质量对比"

图8

液滴撞击表面不同位置运动行为对比(亲水条纹9 mm×0.3 mm,撞击高度30 mm)"

图9

不同偏移距离N液滴撞击表面与亲水条纹接触面积示意图(亲水条纹9 mm×0.3 mm,撞击高度30 mm)"

图10

液滴转动示意图"

图11

液滴撞击不同亲水条纹表面分裂质量对比"

图12

液滴与亲水条纹接触面积示意图"

图13

液滴速度与分裂质量、弹跳距离的关系(亲水条纹9 mm×0.3 mm,撞击偏移距离2 mm)"

图14

撞击液滴和亲水区域接触面积与液滴最大铺展面积之比(亲水条纹9 mm×0.3 mm,撞击偏移距离2 mm)"

图15

分裂液滴x方向平均速度图(亲水条纹9 mm×0.3 mm,撞击偏移距离2 mm)"

1 Parker A R, Lawrence C R. Water capture by a desert beetle[J]. Nature, 2001, 414(6859): 33-34.
2 Ju J, Bai H, Zheng Y, et al. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nature Communications, 2012, 3: 1247.
3 de Ruiter J, Soto D, Varanasi K K. Self-peeling of impacting droplets[J]. Nature Physics, 2018, 14(1): 35-39.
4 马强, 吴晓敏. 表面特性对结霜和融霜排液的影响[J]. 化工学报, 2017, 68: 90-95.
Ma Q, Wu X M. Effect of surface wettability on frosting, defrosting and drainage[J]. CIESC Journal, 2017, 68: 90-95.
5 Sas I, Gorga R E, Joines J A, et al. Literature review on superhydrophobic self-cleaning surfaces produced by electrospinning[J]. Journal of Polymer Science Part B: Polymer Physics, 2012, 50(12): 824-845.
6 Mahapatra P S, Ghosh A, Ganguly R, et al. Key design and operating parameters for enhancing dropwise condensation through wettability patterning[J]. International Journal of Heat and Mass Transfer, 2016, 92: 877-883.
7 Sharma C S, Lam C W E, Milionis A, et al. Self-sustained cascading coalescence in surface condensation[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 27435-27442.
8 范亚茹, 陈志豪, 赵彦杰, 等. 混合蒸气冷凝过程中均匀温度面上液滴自发移动现象及特性[J]. 化工学报, 2019, 70(4): 1358-1366.
Fan Y R, Chen Z H, Zhao Y J, et al. Characteristics of spontaneous movement of condensate drop on uniform temperature surface during condensation of binary vapor mixture[J]. CIESC Journal, 2019, 70(4): 1358-1366.
9 Song D, Bhushan B. Water condensation and transport on bioinspired triangular patterns with heterogeneous wettability at a low temperature[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 377(2138): 20180335.
10 Bai H Y, Zhang C H, Long Z Y, et al. A hierarchical hydrophilic/hydrophobic cooperative fog collector possessing self-pumped droplet delivering ability[J]. Journal of Materials Chemistry A, 2018, 6(42): 20966-20972.
11 Xing Y, Shang W F, Wang Q Q, et al. Integrative bioinspired surface with wettable patterns and gradient for enhancement of fog collection[J]. ACS Applied Materials & Interfaces, 2019, 11(11): 10951-10958.
12 Wan Y L, Cui P, Xu J K, et al. Directional water-collecting behavior of pine needle surface[J]. Materials Letters, 2019, 255: 126561.
13 Sarkar S, Sabhachandani P, Stroopinsky D, et al. Dynamic analysis of immune and cancer cell interactions at single cell level in microfluidic droplets[J]. Biomicrofluidics, 2016, 10(5): 054115.
14 Gao C L, Wang L, Lin Y C, et al. Droplets manipulated on photothermal organogel surfaces[J]. Advanced Functional Materials, 2018, 28(35): 1803072.
15 Cheng Y, Yang Q, Fang Y, et al. Underwater anisotropic 3D superoleophobic tracks applied for the directional movement of oil droplets and the microdroplets reaction[J]. Advanced Materials Interfaces, 2019, 6(10): 1900067.
16 Chaudhury M K, Whitesides G M. How to make water Run uphill[J]. Science, 1992, 256(5063): 1539-1541.
17 Daniel S, Chaudhury M K, Chen J C. Fast drop movements resulting from the phase change on a gradient surface[J]. Science, 2001, 291(5504): 633-636.
18 Zheng Y, Bai H, Huang Z, et al. Directional water collection on wetted spider silk[J]. Nature, 2010, 463(7281): 640-643.
19 Yan Y F, He L L, Li Y, et al. Unidirectional liquid transportation and selective permeation for oil/water separation on a gradient nanowire structured surface[J]. Journal of Membrane Science, 2019, 582: 246-253.
20 Chen X Z, Li X, Zuo P, et al. Controllable fabrication of unidirectional liquid spreading surface through confining plasma eruption and femtosecond laser double pulses[J]. Applied Surface Science, 2020, 504: 144110.
21 Yang C, Zhang Z W, Li G. Programmable droplet manipulation by combining a superhydrophobic magnetic film and an electromagnetic pillar array[J]. Sensors and Actuators B: Chemical, 2018, 262: 892-901.
22 Yang Z N, Park J K, Kim S. Magnetically responsive elastomer-silicon hybrid surfaces for fluid and light manipulation[J]. Small, 2018, 14(2): 1702839.
23 Rossegger E, Hennen D, Griesser T, et al. Directed motion of water droplets on multi-gradient photopolymer surfaces[J]. Polymer Chemistry, 2019, 10(15): 1882-1893.
24 杨宝海, 王宏, 朱恂, 等. 速度对液滴撞击超疏水壁面行为特性的影响[J]. 化工学报, 2012, 63(10): 3027-3033.
Yang B H, Wang H, Zhu X, et al. Effect of velocity on behavior of droplet impacting superhydrophobic surface[J]. CIESC Journal, 2012, 63(10): 3027-3033.
25 Liang G T, Guo Y L, Yang Y, et al. Liquid sheet behaviors during a drop impact on wetted cylindrical surfaces[J]. International Communications in Heat and Mass Transfer, 2014, 54: 67-74.
26 胡志锋, 褚福强, 张旋, 等. 液滴偏心撞击超疏水微柱表面: 形态变化与接触时间[J]. 工程热物理学报, 2020, 41(9): 2266-2271.
Hu Z F, Chu F Q, Zhang X, et al. Off-centered droplet impact on the superhydrophobic surface with a single ridge: morphological evolution and contact time[J]. Journal of Engineering Thermophysics, 2020, 41(9): 2266-2271.
27 Ito Y, Heydari M, Hashimoto A, et al. The movement of a water droplet on a gradient surface prepared by photodegradation[J]. Langmuir, 2007, 23(4): 1845-1850.
28 Liu C S, Zheng D M, Zhou J G, et al. Fabrication of surface energy gradients using self-assembled monolayer surfaces prepared by photodegradation[J]. Materials Science Forum, 2011, 688: 102-106.
29 Schneider J, Matsuoka M, Takeuchi M, et al. Understanding TiO2 photocatalysis: mechanisms and materials[J]. Chemical Reviews, 2014, 114(19): 9919-9986.
30 Pan Y L, Kong W T, Bhushan B, et al. Rapid, ultraviolet-induced, reversibly switchable wettability of superhydrophobic/superhydrophilic surfaces[J]. Beilstein Journal of Nanotechnology, 2019, 10: 866-873.
31 Xu J L, Chen Y Y, Xie J. Non-dimensional numerical study of droplet impacting on heterogeneous hydrophilicity/hydrophobicity surface[J]. International Journal of Heat and Mass Transfer, 2018, 116: 951-968.
32 Antonini C, Amirfazli A, Marengo M. Drop impact and wettability: from hydrophilic to superhydrophobic surfaces[J]. Physics of Fluids, 2012, 24(10): 102104.
33 Zou L, Wang H, Zhu X, et al. Droplet splitting on chemically striped surface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 537: 139-148.
34 Farshchian B, Pierce J, Beheshti M S, et al. Droplet impinging behavior on surfaces with wettability contrasts[J]. Microelectronic Engineering, 2018, 195: 50-56.
[1] 周闻, 鄂承林, 李永祺, 郭玉娇, 李子轩, 卢春喜. 新型多旋臂气液分离器入口旋流头的预分离特性研究[J]. 化工学报, 2021, 72(9): 4775-4785.
[2] 刘曙光, 钟文琪, 陈曦. 基于XCT的气固流化床布风板射流特征研究[J]. 化工学报, 2021, 72(9): 4553-4563.
[3] 黄正梁, 张鹏, 杨遥, 任聪静, 王靖岱, 阳永荣. 外加电场对静电流化床中颗粒运动与床层粘壁的调控机制[J]. 化工学报, 2021, 72(9): 4544-4552.
[4] 许峻, 王智峰, 侯凯军, 高永福, 范怡平, 卢春喜. 双层喷嘴进料提升管内气固流动混合特性的大型冷模实验研究[J]. 化工学报, 2021, 72(8): 4019-4029.
[5] 许晨怡, 叶恭然, 郭豪文, 庄园, 郭智恺, 韩晓红, 陈光明. 制冷剂R1336mzz(E)液相黏度理论与实验研究[J]. 化工学报, 2021, 72(6): 3261-3269.
[6] 宋奕慧, 雷志轶, 范国利, 杨兰, 林彦军, 李峰. 基于LiAl-LDH/C杂化前体制备高比表面固体碱催化剂及其催化性能研究[J]. 化工学报, 2021, 72(6): 3084-3094.
[7] 程文静, 余林, 程高, 钟远红, 郑成, 毛桃嫣. 多羟基Bola有机硅季铵盐的合成、表征及其应用性能[J]. 化工学报, 2021, 72(5): 2837-2848.
[8] 朱丹丹, 许雄文, 刘金平, 卢炯. 混合润湿性图案化铜基表面冷凝换热性能研究[J]. 化工学报, 2021, 72(5): 2528-2546.
[9] 贺征宇, 彭本利, 苏风民, 纪玉龙, 马鸿斌. 微纳结构超疏水表面参数影响含不凝气蒸汽冷凝传热的理论分析[J]. 化工学报, 2021, 72(5): 2570-2577.
[10] 周烨, 肖慧霞, 王亦飞, 于广锁. 基于配煤和表面修饰改善褐煤成浆性的研究[J]. 化工学报, 2021, 72(4): 2233-2240.
[11] 朱明军, 胡大鹏. 三相卧螺离心机设计分析及结构参数对分离效果的影响[J]. 化工学报, 2021, 72(4): 2113-2122.
[12] 袁旭东,贾磊,周到,赵盼盼,吴俊峰,王汝金. 微通道临界热通量的基础理论与提升技术研究进展[J]. 化工学报, 2021, 72(4): 1796-1814.
[13] 曹燕,丁延,郭义仓,汪城,刘英杰,陶磊,李进龙. 溴化锂及离子液体水溶液密度、黏度和表面张力测定与计算[J]. 化工学报, 2021, 72(4): 1874-1884.
[14] 彭启, 贾力, 丁艺, 张永欣, 党超, 银了飞. 受限微结构对低表面张力液滴合并弹跳的影响[J]. 化工学报, 2021, 72(4): 1920-1929.
[15] 吴兆伟, 施浙杭, 赵辉, 周骛, 蔡小舒, 刘海峰. 表面张力变化对含气泡液体射流破裂的影响[J]. 化工学报, 2021, 72(3): 1283-1294.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 蒋国强, 朱德权, 昝佳, 丁富新. 电致孔经皮给药:表面活性剂对孔道存在时间和药物传输的影响[J]. CIESC Journal, 2007, 15(3): 397 -402 .
[2] 朱建华, 沈复. 酯化反应蒸馏过程的模型化及模拟研究[J]. CIESC Journal, 2003, 11(6): 736 -739 .
[3] 吉远辉, 吉晓燕, 冯新, 刘畅, 吕玲红, 陆小华. CO2-H2O和CO2-H2O-NaCl 体系的相平衡研究进展[J]. CIESC Journal, 2007, 15(3): 439 -448 .
[4] Longan SHANG, Jin Hwan DO, 范代娣, 姜岷, Ho Nam CHANG. Ralstonia eutropha批式流加培养生产羟基丁酸-丙酸混合聚酯中丙酸进料优化研究[J]. CIESC Journal, 2003, 11(2): 220 -223 .
[5] 谢一兵, 沈讯伟, 袁春伟. 基于固定相二氧化钛薄膜的新型多重石英管分布式光催化反应器及其水处理应用[J]. CIESC Journal, 2003, 11(1): 27 -32 .
[6] 马红武, 赵学明, 郭晓峰. 通过通量平衡分析计算经验和真实维持系数[J]. CIESC Journal, 2002, 10(1): 89 -92 .
[7] 华贲, 周章玉, 成思危. 化工企业集成的层次模型结构体系[J]. CIESC Journal, 2001, 9(4): 395 -401 .
[8] 徐志南, 岑沛霖. 大肠杆菌中同时表达的可溶性和不溶性人α-干扰素-2b的初步分离研究[J]. CIESC Journal, 2002, 10(6): 686 -689 .
[9] 郝小龙, 周明华, 俞汉青, 沈琴琴, 雷乐成. 钠盐浓度对厌氧产氢颗粒污泥从蔗糖中产氢的影响[J]. CIESC Journal, 2006, 14(4): 511 -517 .
[10] 刁彦华, 赵耀华, 王秋良. 双组分制冷工质R11-R113气泡动力学特性的可视化研究[J]. CIESC Journal, 2006, 14(2): 149 -157 .