化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4708-4717.doi: 10.11949/0438-1157.20210239

• 催化、动力学与反应器 • 上一篇    下一篇

SiO2网络限域CuO纳米晶的甲醛乙炔化性能研究

李海涛(),孟平凡,张因,武瑞芳,黄鑫,班丽君,韩旭东,席琳,王兴皓,田博辉,赵永祥()   

  1. 山西大学化学与化工学院,精细化学品教育部工程研究中心,山西 太原 030006
  • 收稿日期:2021-02-07 修回日期:2021-06-29 出版日期:2021-09-05 发布日期:2021-09-05
  • 通讯作者: 赵永祥 E-mail:htli@sxu.edu.cn;yxzhao@sxu.edu.cn
  • 作者简介:李海涛(1982—),男,博士,副教授,htli@sxu.edu.cn
  • 基金资助:
    国家自然科学基金项目(U1710221);山西省国际科技合作项目(201703D421034)

Study on formaldehyde ethynylation performance of CuO nanocrystalline confined in SiO2 networks

Haitao LI(),Pingfan MENG,Yin ZHANG,Ruifang WU,Xin HUANG,Lijun BAN,Xudong HAN,Lin XI,Xinghao WANG,Bohui TIAN,Yongxiang ZHAO()   

  1. Engineering Research Center of Education for Fine Chemicals, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006,Shanxi,China
  • Received:2021-02-07 Revised:2021-06-29 Published:2021-09-05 Online:2021-09-05
  • Contact: Yongxiang ZHAO E-mail:htli@sxu.edu.cn;yxzhao@sxu.edu.cn

摘要:

甲醛与乙炔缩合制取1,4-丁炔二醇是乙炔化工的重要方向。探讨铜基催化剂在甲醛乙炔化反应中的演变及催化作用机制,并开发更高效的甲醛乙炔化催化剂是一个值得科学与产业界关注的课题。本工作在前期页硅酸铜催化剂制备及甲醛乙炔化性能研究基础上,进一步通过热处理温度的调整,在焙烧温度为650℃时,构筑了限域于SiO2网络结构中的CuO纳米晶催化剂。CuO纳米晶适宜的化学环境,使其在甲醛乙炔化反应初始阶段快速形成活性炔化亚铜,获得了1,4-丁炔二醇收率80%左右的结果,克服了页硅酸铜物种转化为炔化亚铜速率慢、诱导期长的弊端。SiO2网络结构的限域作用也进一步抑制了活性组分的流失,在6次套用实验中1,4-丁炔二醇收率几乎不变,呈现出良好的使用稳定性。

关键词: 催化, 焙烧, 限域, 页硅酸铜, 制备, 稳定性, 甲醛乙炔化, 1,4-丁炔二醇

Abstract:

The synthesis of 1,4-butynediol by the condensation of formaldehyde and ethynyl is an important reaction in ethynyl chemical industry. The study on catalytic mechanism and evolution of Cu-based catalysts in the acetylene reaction of formaldehyde has attracted more and more attention. In this work, on the basis of the preparation of copper silicate catalyst and the performance of formaldehyde ethynylation in the previous stage, and further through the adjustment of the heat treatment temperature, when the calcination temperature is 650℃, a CuO nanocrystalline catalyst confined in the SiO2 network structure was constructed. Due to suitable chemical environment of CuO nanocrystals, cuprous ethynylation is formed rapidly in the initial stage of the formaldehyde ethynylation reaction, and the yield of about 80% of 1,4-butynediol is obtained. The initial activity is higher than that of the same kinds of catalyst. More importantly, the catalyst showed good stability due to the confined effect of the SiO2 network structure. The yield of 1,4-butynediol was almost unchanged in 6 application experiments, showing good stability.

Key words: catalysis, calcination, confinement, copper phyllosilicate, preparation, stability, formaldehyde ethynylation, 1,4-butynediol

中图分类号: 

  • TQ 028.8

图1

CuO-SiO2前体的TG/DTG-MS曲线"

图2

不同温度处理的CuO-SiO2催化剂的N2吸、脱附等温线与孔径分布曲线"

表1

催化剂的织构性能和CuO晶粒尺寸"

Catalyst比表面积ABET /(m2 ·g-1)孔径Dpore/nm孔体积VTotal/(cm3·g-1)Cuo晶粒尺寸DCuO/nm
CuO-SiO25495.050.69
CuO-SiO2-3505324.750.63
CuO-SiO2-4505024.940.62
CuO-SiO2-5504994.890.61
CuO-SiO2-6503925.430.515.6
CuO-SiO2-7503125.630.458.6
CuO-SiO2-8501507.360.2811.4

图3

不同温度处理CuO-SiO2的XRD谱图"

图4

不同温度处理CuO-SiO2的TEM图"

图5

不同温度处理CuO-SiO2的红外光谱"

图6

不同温度下CuO-SiO2的拉曼光谱"

图7

不同温度处理CuO-SiO2的XPS谱图"

表2

CuO-SiO2中Cu形态的化学环境"

CatalystBefore reactionAfter reaction
Peak binding energy/eVCu2+(Ⅰ)/Cu2+(Ⅱ)Cu/SiPeak kinetic energy/eVCu+/Cu2+
Cu2+(Ⅰ)Cu2+(Ⅱ)Cu+Cu2+
CuO-SiO2-450934.1936.30.050.54915.0917.31.71
CuO-SiO2-650934.4936.60.170.36915.1917.74.82
CuO-SiO2-850934.7936.82.080.13915.0917.53.48

图8

CuO-SiO2 不同焙烧温度下的结构"

图9

活化CuO-SiO2后的Cu XAES"

图10

催化剂循环实验图(实验条件:温度90℃;反应时间10 h; C2H2流量30 ml/min)"

表3

铜在不同催化剂中的浸出量"

CatalystCu in mother liquid/(mg/L)
1 Cycle3 Cycles6 Cycles
CuO-SiO2-45033.835.236.5
CuO-SiO2-65035.737.336.2
CuO-SiO2-85037.939.538.4
1 Dudzińska A. Analysis of sorption and desorption of unsaturated hydrocarbons: ethylene, propylene and acetylene on hard coals[J]. Fuel, 2019, 246: 232-243.
2 Cai Y C, Liu X C. Mechanical properties test of pavement base or subbase made of solid waste stabilized by acetylene sludge and fly ash[J]. AIP Advances, 2020, 10(6): 065022.
3 杨冲, 林旭枫, 张金锋, 等. 正己烷–异丙醇共沸体系液液相平衡数据测定及关联[J]. 化工学报, 2020, 71(7): 3009-3017.
Yang C, Lin X F, Zhang J F, et al. Measurement and correlation of liquid-liquid equilibrium data for n-hexane-isopropanol azeotropic system[J]. CIESC Journal, 2020, 71(7): 3009-3017.
4 Heisig C, Diedenhoven J, Jensen C, et al. Selective hydrogenation of biomass-derived succinic acid: reaction network and kinetics[J]. Chemical Engineering & Technology, 2020, 43(3): 484-492.
5 蒋瑞, 胡冬冬, 刘涛, 等. 热塑性聚醚酯弹性体硬段含量对其超临界CO2发泡行为的影响[J]. 化工学报, 2020, 71(2): 871-878.
Jiang R, Hu D D, Liu T, et al. Effect of hard segment content on microcellular foaming process of thermoplastic polyether ester elastomer using supercritical CO2 as blowing agent[J]. CIESC Journal, 2020, 71(2): 871-878.
6 Le S D, Nishimura S. Highly selective synthesis of 1, 4-butanediol via hydrogenation of succinic acid with supported Cu-Pd alloy nanoparticles[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(22): 18483-18492.
7 Raju M A, Gidyonu P, Nagaiah P, et al. Mesoporous silica-supported copper catalysts for dehydrogenation of biomass-derived 1, 4-butanediol to gamma butyrolactone in a continuous process at atmospheric pressure[J]. Biomass Conversion and Biorefinery, 2019, 9(4): 719-726.
8 Chaudhari R V, Rode C V, Jaganathan R, et al. Process for the conversion of 1, 4 butynediol to 1, 4butanediol, or a mixture of 1, 4 butenediol and 1, 4 butanediol: US6469221[P]. 2002-10-22.
9 Lu C Y, Wang Y, Zhang R G, et al. Preparation of an unsupported copper-based catalyst for selective hydrogenation of acetylene from Cu2O nanocubes[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46027-46036.
10 Zak D. Butynediol production: US4085151[P]. 1978-04-18..
11 Fremont J. Malachite preparation: US4107082 A[P]. 1978-08-15.
12 郑艳, 孙自瑾, 王永钊, 等. CuO-Bi2O3/SiO2-MgO催化剂的制备及炔化性能[J]. 分子催化, 2012, 26(3): 233-238.
Zheng Y, Sun Z J, Wang Y Z, et al. Preparation of CuO-Bi2O3/SiO2-MgO catalyst and its ethynylation performance[J]. Journal of Molecular Catalysis, 2012, 26(3): 233-238.
13 王俊俊, 李海涛, 马志强, 等. 磁性CuO-Bi2O3/Fe3O4-SiO2-MgO催化剂的制备及甲醛乙炔化性能[J]. 化工学报, 2015, 66(6): 2098-2104.
Wang J J, Li H T, Ma Z Q, et al. Preparation of magnetic CuO-Bi2O3/Fe3O4-SiO2-MgO catalyst and its catalytic performance for formaldehyde ethynylation[J]. CIESC Journal, 2015, 66(6): 2098-2104.
14 马志强, 张洪喜, 李海涛, 等. 核壳结构CuO-Bi2O3@meso-SiO2催化剂的制备及甲醛乙炔化性能[J]. 工业催化, 2015, 23(5): 344-348.
Ma Z Q, Zhang H X, Li H T, et al. Preparation of core-shell CuO-Bi2O3@meso-SiO2 catalyst and its catalytic performance for formaldehyde ethynylation[J]. Industrial Catalysis, 2015, 23(5): 344-348.
15 杨国峰, 李海涛, 张鸿喜, 等. NaOH浓度对Cu2O结构及甲醛乙炔化性能的影响[J]. 分子催化, 2016, 30(6): 540-546.
Yang G F, Li H T, Zhang H X, et al. Effect of Na OH concentration on structure and catalytic performance of Cu2O for formaldehyde ethynylation[J]. Journal of Molecular Catalysis (China), 2016, 30(6): 540-546.
16 李海涛, 牛珠珠, 杨国峰, 等. Cu2O/TiO2催化甲醛乙炔化反应的载体效应[J]. 化工学报, 2018, 69(6): 2512-2518.
Li H T, Niu Z Z, Yang G F, et al. Effect of Cu2O/TiO2 catalyst support in formaldehyde ethynylation[J]. CIESC Journal, 2018, 69(6): 2512-2518.
17 李海涛, 郝全爱, 王志鹏, 等. 不同沉淀剂制备CuO-ZnO催化剂甲醛乙炔化反应性能[J]. 分子催化, 2019, 33(2): 124-131.
LI H T, HAO Q A, WANG Z P, et al. Study on catalytic performance of CuO-ZnO catalyst prepared by different precipitants[J]. Journal of Molecular Catalysis (China), 2019, 33(2): 124-131.
18 Wang Z P, Ban L J, Meng P F, et al. Ethynylation of formaldehyde over binary Cu-based catalysts: study on synergistic effect between Cu+ species and acid/base sites[J]. Nanomaterials, 2019, 9(7): 1038.
19 Wang Z P, Ban L J, Meng P F, et al. Ethynylation of formaldehyde over CuO/SiO2 catalysts modified by Mg species: effects of the existential states of Mg species[J]. Nanomaterials, 2019, 9(8): 1137.
20 Li H T, Ban L J, Niu Z Z, et al. Application of CuxO-FeyOz nanocatalysts in ethynylation of formaldehyde[J]. Nanomaterials, 2019, 9(9): 1301.
21 Guerreiro E D, Gorriz O F, Larsen G, et al. Cu/SiO2 catalysts for methanol to methyl formate dehydrogenation: a comparative study using different preparation techniques[J]. Applied Catalysis A: General, 2000, 204(1): 33-48.
22 Brands D S, Poels E K, Bliek A. Ester hydrogenolysis over promoted Cu/SiO2 catalysts[J]. Applied Catalysis A: General, 1999, 184(2): 279-289.
23 Chen L, Guo P, Qiao M, et al. Cu/SiO2 catalysts prepared by the ammonia-evaporation method: Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol[J]. Journal of Catalysis, 2008, 257(1): 172-180.
24 Wang Z Q, Xu Z N, Peng S Y, et al. High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation[J]. ACS Catalysis, 2015, 5(7): 4255-4259.
25 Ding T M, Tian H S, Liu J C, et al. Highly active Cu/SiO2 catalysts for hydrogenation of diethyl malonate to 1, 3-propanediol[J]. Chinese Journal of Catalysis, 2016, 37(4): 484-493.
26 杨亚玲, 张博, 李伟, 等. 焙烧温度对草酸二甲酯加氢制乙二醇催化剂Cu/SiO2的影响[J]. 工业催化, 2010, 18(6): 28-31.
Yang Y L, Zhang B, Li W, et al. Effects of calcinations temperature on the properties of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol[J]. Industrial Catalysis, 2010, 18(6): 28-31.
27 Li H T, Ban L J, Wang Z P, et al. Regulation of Cu species in CuO/SiO2 and its structural evolution in ethynylation reaction[J]. Nanomaterials, 2019, 9(6): 842.
28 Wang Z P, Niu Z Z, Hao Q, et al. Enhancing the ethynylation performance of CuO-Bi2O3 nanocatalysts by tuning Cu-Bi interactions and phase structures[J]. Catalysts, 2019, 9(1): 35.
29 王志鹏, 牛珠珠, 班丽君, 等. 不同晶相TiO2负载Cu2O催化甲醛乙炔化反应[J]. 高等学校化学学报, 2019, 40(2): 334-341.
Wang Z P, Niu Z Z, Ban L J, et al. Formaldehyde ethynylation reaction over Cu2O supported on TiO2 with different phases[J]. Chemical Journal of Chinese Universities, 2019, 40(2): 334-341.
30 李海涛, 班丽君, 牛珠珠, 等. 制备条件对Cu2O结构及甲醛乙炔化性能的影响[J]. 分子催化, 2019, 33(3): 237-244.
Li H T, Ban L J, Niu Z Z, et al. Effect of preparation condition on structure and catalytic performance of Cu2O for formaldehyde ethynylation[J]. Journal of Molecular Catalysis (China), 2019, 33(3): 237-244.
31 Dong F, Ding G Q, Zheng H Y, et al. Highly dispersed Cu nanoparticles as an efficient catalyst for the synthesis of the biofuel 2-methylfuran[J]. Catalysis Science & Technology, 2016, 6(3): 767-779.
32 Gong J L, Yue H R, Zhao Y J, et al. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites[J]. Journal of the American Chemical Society, 2012, 134(34): 13922-13925.
33 Zou G, Li H, Zhang D, et al. Well-aligned arrays of CuO nanoplatelets[J]. The Journal of Physical Chemistry B, 2006, 110(4): 1632-1637.
34 Wang Z, Liu Q S, Yu J F, et al. Surface structure and catalytic behavior of silica-supported copper catalysts prepared by impregnation and Sol-gel methods[J]. Applied Catalysis A: General, 2003, 239(1/2): 87-94.
35 Cordoba G, Arroyo R, Fierro J L G, et al. Study of xerogel-glass transition of CuO/SiO2[J]. Journal of Solid State Chemistry, 1996, 123(1): 93-99.
36 Díaz G, Pérez-Hernández R, Gómez-Cortés A, et al. CuO-SiO2 sol-gel catalysts: characterization and catalytic properties for NO reduction[J]. Journal of Catalysis, 1999, 187(1): 1-14.
37 Toupance T, Kermarec M, Lambert J F, et al. Conditions of formation of copper phyllosilicates in silica-supported copper catalysts prepared by selective adsorption[J]. The Journal of Physical Chemistry B, 2002, 106(9): 2277-2286.
38 Kliche G, Popovic Z V. Far-infrared spectroscopic investigations on CuO[J]. Physical Review B, Condensed Matter, 1990, 42(16): 10060-10066.
39 Dunning T H, McKoy V. Nonempirical calculations on excited states: the ethylene molecule[J]. The Journal of Chemical Physics, 1967, 47(5): 1735-1747.
40 Degen I A, Newman G A. Raman spectra of inorganic ions[J]. Spectrochimica Acta Part A: Molecular Spectroscopy, 1993, 49(5/6): 859-887.
41 Goldstein H F, Kim D S, Yu P Y, et al. Raman study of CuO single crystals[J]. Physical Review B, 1990, 41(10): 7192-7194.
42 Irwin J C, Chrzanowski J, Wei T, et al. Raman scattering from single crystals of cupric oxide[J]. Physica C: Superconductivity, 1990, 166(5/6): 456-464.
43 Huang Z W, Liu H L, Cui F, et al. Effects of the precipitation agents and rare earth additives on the structure and catalytic performance in glycerol hydrogenolysis of Cu/SiO2 catalysts prepared by precipitation-gel method[J]. Catalysis Today, 2014, 234: 223-232.
44 Huang Z W, Cui F, Xue J J, et al. Cu/SiO2 catalysts prepared by hom- and heterogeneous deposition-precipitation methods: texture, structure, and catalytic performance in the hydrogenolysis of glycerol to 1, 2-propanediol[J]. Catalysis Today, 2012, 183(1): 42-51.
45 Huang Z W, Cui F, Xue J J, et al. Synthesis and structural characterization of silica dispersed copper nanomaterials with unusual thermal stability prepared by precipitation-gel method[J]. The Journal of Physical Chemistry C, 2010, 114(39): 16104-16113.
46 Oosterwyck-Gastuche M C V. La structure de la chrysocolle[EB/OL]. [2021-01-05]. .
47 Wang C, Cheng Q P, Wang X L, et al. Enhanced catalytic performance for CO preferential oxidation over CuO catalysts supported on highly defective CeO2 nanocrystals[J]. Applied Surface Science, 2017, 422: 932-943.
48 Cocco F, Elsener B, Fantauzzi M, et al. Nanosized surface films on brass alloys by XPS and XAES[J]. RSC Advances, 2016, 6(37): 31277-31289.
[1] 戴晓业, 安青松, 许云婷, 史琳. 废弃制冷剂降解方法研究现状及思考[J]. 化工学报, 2021, 72(S1): 1-6.
[2] 赵文一, 匡以武, 王文, 张红星, 苗建印. 水平管内冷凝流动的稳定性[J]. 化工学报, 2021, 72(S1): 257-265.
[3] 李腾飞, 缪赟, 杨柳, 王龙耀, 朱铧丞. 微波强化Y型分子筛离子交换技术[J]. 化工学报, 2021, 72(S1): 406-412.
[4] 付凤艳, 邢广恩. 碱性燃料电池用阴离子交换膜的研究进展[J]. 化工学报, 2021, 72(S1): 42-52.
[5] 陈晨, 王明明, 王志刚, 谭小耀. 镍基非对称中空纤维膜用于乙醇自热重整制氢[J]. 化工学报, 2021, 72(S1): 482-493.
[6] 周东一, 肖湘华, 肖飚, 刘益才. 脂肪类复合相变储能材料中脂肪酸最佳质量含量的确定方法[J]. 化工学报, 2021, 72(S1): 560-566.
[7] 方远鑫, 肖武, 姜晓滨, 李祥村, 贺高红, 吴雪梅. 膜分离耦合CO2电催化加氢制甲酸工艺的设计及模拟[J]. 化工学报, 2021, 72(9): 4740-4749.
[8] 演康, 杨颂, 刘守军, 杨超, 樊惠玲, 上官炬. 低阶煤原位制备ZnO基活性炭脱硫剂[J]. 化工学报, 2021, 72(9): 4921-4930.
[9] 王伟, 钱伟鑫, 马宏方, 应卫勇, 张海涛. 吡啶修饰H-MOR上二甲醚羰基化吸附-扩散理论研究[J]. 化工学报, 2021, 72(9): 4786-4795.
[10] 梁家豪, 张国强, 高源, 尹娇, 郑华艳, 李忠. 介孔构建对CuY甲醇氧化羰基化反应活性的影响[J]. 化工学报, 2021, 72(9): 4685-4697.
[11] 李泽严, 樊星, 李坚. 非热等离子体强化TiO2催化尿素分解副产物水解性能的研究[J]. 化工学报, 2021, 72(9): 4698-4707.
[12] 王欢, 符方宝, 李琼, 席跃宾, 杨东杰. 木质素碳纳米材料制备及在催化中的应用研究进展[J]. 化工学报, 2021, 72(9): 4445-4457.
[13] 陈旭杰, 吕喜蕾, 史欢欢, 郑丽萍, 魏茜文, 田鹏辉, 蒋雨希, 吕秀阳. HBr-MgBr2催化己糖二酸脱水环合制备2,5-呋喃二甲酸的研究[J]. 化工学报, 2021, 72(9): 4658-4664.
[14] 贺兴处,陈德珍,梅振飞,阿迪力·巴吐尔null,安青. CaO催化PE热解及H2O对催化过程影响的ReaxFF MD研究与机理分析[J]. 化工学报, 2021, 72(9): 4665-4674.
[15] 谢晶, 舒歌平, 杨葛灵, 高山松, 王洪学, 卢晗锋, 陈银飞. Mo修饰的钼铁复合催化剂及其煤直接液化催化性能[J]. 化工学报, 2021, 72(9): 4675-4684.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王志, 赵媛媛, 叶楠, 王纪孝, 赵之平, 王世昌. 微滤和超滤膜流动电位的四种测量操作方式[J]. CIESC Journal, 2006, 14(4): 456 -463 .
[2] 王微微. 油气两相流空隙率测量[J]. CIESC Journal, 2007, 15(3): 339 -344 .
[3] 陈晶瑜, 张磊, 陈金春, 陈国强. Ralstonia eutropha PHB4重组菌合成PHA共聚物及性质测定[J]. CIESC Journal, 2007, 15(3): 391 -396 .
[4] 李勇飞, 严旭辉, 江国防, 刘强, 宋建新, 郭灿城. 金属卟啉催化的甲苯氧化及工艺优化[J]. CIESC Journal, 2007, 15(3): 453 -457 .
[5] 魏伟胜, 徐建, 方大伟, 鲍晓军. 甲烷空气部分氧化制合成气喷动床反应器的研究[J]. CIESC Journal, 2003, 11(6): 643 -648 .
[6] 柯明, 汪燮卿, 张凤美. 磷改性ZSM-5分子筛物化性质和裂解制乙烯性能的研究[J]. CIESC Journal, 2003, 11(6): 671 -676 .
[7] 董朝霞, 李明远, 吴肇亮, 林梅钦. 交联聚合物线团的变形能力研究[J]. CIESC Journal, 2003, 11(6): 686 -690 .
[8] 陈启石, 冯霄. 考虑环境影响最小化的反应过程的开发[J]. CIESC Journal, 2003, 11(5): 611 -615 .
[9] 代世耀, 徐国华, 安越, 陈长聘, 陈立新, 王启东. 富镧稀土镍-苯浆液体系中液相苯加氢反应动力学研究[J]. CIESC Journal, 2003, 11(5): 571 -576 .
[10] 尤学一, H.J.Bart. 搅拌萃取塔内单相流动不同雷诺平均湍流模型结果的比较[J]. CIESC Journal, 2003, 11(3): 362 -366 .