化工学报 ›› 2021, Vol. 72 ›› Issue (7): 3488-3510.doi: 10.11949/0438-1157.20210269

• 综述与专论 • 上一篇    下一篇

有机框架膜在气体分离中的研究进展

王绍宇1,2(),马翰泽1,2(),吴洪1,2,梁旭1,2,王洪建1,2,朱姿亭1,2,姜忠义1,2,3()   

  1. 1.天津大学化工学院绿色化学化工教育部重点实验室,天津 300072
    2.天津化学化工协同创新中心,天津 300072
    3.天津大学-新加坡国立大学福州联合学院,天津大学福州国际校区,福建 福州 350207
  • 收稿日期:2021-02-19 修回日期:2021-04-25 出版日期:2021-07-05 发布日期:2021-07-05
  • 通讯作者: 姜忠义 E-mail:shaoyuw_20@tju.edu.cn;mahanze@tju.edu.cn;zhyjiang@tju.edu.cn
  • 作者简介:王绍宇(1998—),男,硕士研究生,shaoyuw_20@tju.edu.cn|马翰泽(1998—),男,硕士研究生,mahanze@tju.edu.cn
  • 基金资助:
    国家自然科学基金项目(21621004);高等学校学科创新引智计划2.0(BP0618007)

Research advances of organic framework membranes in gas separation

WANG Shaoyu1,2(),MA Hanze1,2(),WU Hong1,2,LIANG Xu1,2,WANG Hongjian1,2,ZHU Ziting1,2,JIANG Zhongyi1,2,3()   

  1. 1.Key Laboratory for Green Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
    2.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
    3.Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, Fujian, China
  • Received:2021-02-19 Revised:2021-04-25 Published:2021-07-05 Online:2021-07-05
  • Contact: JIANG Zhongyi E-mail:shaoyuw_20@tju.edu.cn;mahanze@tju.edu.cn;zhyjiang@tju.edu.cn

摘要:

高渗透性、高选择性和高稳定性的膜材料是决定膜分离过程效率的关键。有机框架膜(organic framework membranes,OFMs)具有孔隙率高、孔道长程有序、易于官能化修饰、稳定性强等特点,在气体膜分离领域具有重要发展前景。综述了有机框架膜的化学组成、结构特征、制备方法及其在二氧化碳捕集与分离、烯烃/烷烃分离及稀有气体分离等气体分离过程中的应用。最后,对有机框架膜在气体分离领域的机遇和挑战进行了总结,并对其发展方向进行了展望。

关键词: 有机框架膜, 膜分离, 气体分离, 多孔材料, 膜制备方法

Abstract:

Materials with high permeability, high selectivity and high stability are the critical factors to efficient membrane separation processes. Organic framework membranes (OFMs) hold great prospects in gas separation, owing to their high porosity, long-range regular structure, facilely-tailored functionality, and high stability. This review summarized the chemical compositions, structures, fabrications of OFMs and their applications in carbon dioxide capture and separation, olefin/paraffin separation and noble gas separation. Finally, the major challenges and brief perspectives of OFMs in gas separation are tentatively identified.

Key words: organic framework membrane, membrane separation, gas separation, porous materials, fabrication of membrane

中图分类号: 

  • TQ 028.8
1 Bernardo P, Drioli E, Golemme G. Membrane gas separation: a review/state of the art[J]. Industrial & Engineering Chemistry Research, 2009, 48(10): 4638-4663.
2 Bernardo G, Araújo T, da Silva Lopes T, et al. Recent advances in membrane technologies for hydrogen purification[J]. International Journal of Hydrogen Energy, 2020, 45(12): 7313-7338.
3 Chuah C, Goh K, Yang Y Q, et al. Harnessing filler materials for enhancing biogas separation membranes[J]. Chemical Reviews, 2018, 118(18): 8655-8769.
4 Wang S, Li X, Wu H, et al. Advances in high permeability polymer-based membrane materials for CO2 separations[J]. Energy & Environmental Science, 2016, 9(6): 1863-1890.
5 Ren Y X, Liang X, Dou H Z, et al. Membrane-based olefin/paraffin separations[J]. Advanced Science, 2020, 7(19): 2001398.
6 Qian Q H, Asinger P A, Lee M J, et al. MOF-based membranes for gas separations[J]. Chemical Reviews, 2020, 120(16): 8161-8266.
7 Freeman B D. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes[J]. Macromolecules, 1999, 32(2): 375-380.
8 Robeson L M. Correlation of separation factor versus permeability for polymeric membranes[J]. Journal of Membrane Science, 1991, 62(2): 165-185.
9 Robeson L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400.
10 Liu Y Y, Ng Z, Khan E A, et al. Synthesis of continuous MOF-5 membranes on porous α-alumina substrates[J]. Microporous and Mesoporous Materials, 2009, 118(1/2/3): 296-301.
11 Huang A S, Dou W, Caro J. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization[J]. Journal of the American Chemical Society, 2010, 132(44): 15562-15564.
12 Zhang F, Zou X Q, Gao X, et al. Hydrogen selective NH2-MIL-53(Al) MOF membranes with high permeability[J]. Advanced Functional Materials, 2012, 22(17): 3583-3590.
63 Jiang J X, Su F B, Trewin A, et al. Conjugated microporous poly(aryleneethynylene) networks[J]. Angewandte Chemie International Edition, 2008, 47(7): 1167.
64 Jiang J X, Trewin A, Adams D J, et al. Band gap engineering in fluorescent conjugated microporous polymers[J]. Chemical Science, 2011, 2(9): 1777-1781.
65 Lee J S M, Cooper A I. Advances in conjugated microporous polymers[J]. Chemical Reviews, 2020, 120(4): 2171-2214.
66 Liu Q Q, Tang Z, Wu M D, et al. Design, preparation and application of conjugated microporous polymers[J]. Polymer International, 2014, 63(3): 381-392.
67 Sun C J, Zhao X Q, Wang P F, et al. Thiophene-based conjugated microporous polymers: synthesis, characterization and efficient gas storage[J]. Science China Chemistry, 2017, 60(8): 1067-1074.
68 Xu Y F, Zhang C, Mu P, et al. Tetra-armed conjugated microporous polymers for gas adsorption and photocatalytic hydrogen evolution[J]. Science China Chemistry, 2017, 60(8): 1075-1083.
69 Tan Z Q, Su H M, Guo Y W, et al. Ferrocene-based conjugated microporous polymers derived from Yamamoto coupling for gas storage and dye removal[J]. Polymers, 2020, 12(3): 719.
70 Sheng X, Shi H, Yang L M, et al. Rationally designed conjugated microporous polymers for contaminants adsorption[J]. Science of the Total Environment, 2021, 750: 141683.
71 Baig N, Shetty S, Al-Mousawi S, et al. Conjugated microporous polymers using a copper-catalyzed [4 + 2] cyclobenzannulation reaction: promising materials for iodine and dye adsorption[J]. Polymer Chemistry, 2021, 12(15): 2282-2292.
72 Luo S H, Zeng Z T, Zeng G M, et al. Recent advances in conjugated microporous polymers for photocatalysis: designs, applications, and prospects[J]. Journal of Materials Chemistry A, 2020, 8(14): 6434-6470.
73 Xu H, Li X, Hao H M, et al. Designing fluorene-based conjugated microporous polymers for blue light-driven photocatalytic selective oxidation of amines with oxygen[J]. Applied Catalysis B: Environmental, 2021, 285: 119796.
74 Wang M K, Wang S, Song X W, et al. Photo-responsive oxidase mimic of conjugated microporous polymer for constructing a pH-sensitive fluorescent sensor for bio-enzyme sensing[J]. Sensors and Actuators B: Chemical, 2020, 316: 128157.
75 Yan C N, Meng N, Lyu W, et al. Hierarchical porous hollow carbon spheres derived from spirofluorene- and aniline-linked conjugated microporous polymer for phase change energy storage[J]. Carbon, 2021, 176: 178-187.
76 Cheng G, Hasell T, Trewin A, et al. Soluble conjugated microporous polymers[J]. Angewandte Chemie International Edition, 2012, 51(51): 12727-12731.
77 Huang B L, Zhao P, Dai Y N, et al. Size-controlled synthesis of soluble-conjugated microporous polymer nanoparticles through sonogashira polycondensation in confined nanoreactors[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2016, 54(15): 2285-2290.
78 Tozawa T, Jones J T, Swamy S I, et al. Porous organic cages[J]. Nature Materials, 2009, 8(12): 973-978.
79 Yuan Y D, Dong J, Liu J, et al. Porous organic cages as synthetic water channels[J]. Nature Communications, 2020, 11(1): 4927.
13 Fan H W, Mundstock A, Gu J H, et al. An azine-linked covalent organic framework ACOF-1 membrane for highly selective CO2/CH4 separation[J]. Journal of Materials Chemistry A, 2018, 6(35): 16849-16853.
14 Ying Y P, Tong M M, Ning S C, et al. Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation[J]. Journal of the American Chemical Society, 2020, 142(9): 4472-4480.
15 Fan H W, Mundstock A, Feldhoff A, et al. Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation[J]. Journal of the American Chemical Society, 2018, 140(32): 10094-10098.
16 Wang L, Jia J T, Faheem M, et al. Fabrication of triazine-based porous aromatic framework (PAF) membrane with structural flexibility for gas mixtures separation[J]. Journal of Industrial and Engineering Chemistry, 2018, 67: 373-379.
17 Lindemann P, Tsotsalas M, Shishatskiy S, et al. Preparation of freestanding conjugated microporous polymer nanomembranes for gas separation[J]. Chemistry of Materials, 2014, 26(24): 7189-7193.
18 Song Q L, Jiang S, Hasell T, et al. Porous organic cage thin films and molecular-sieving membranes[J]. Advanced Materials, 2016, 28(13): 2629-2637.
19 Feng S, Shang Y X, Wang Z K, et al. Fabrication of a hydrogen-bonded organic framework membrane through solution processing for pressure-regulated gas separation[J]. Angewandte Chemie International Edition, 2020, 59(10): 3840-3845.
20 Yaghi O M, Li H L. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J]. Journal of the American Chemical Society, 1995, 117(41): 10401-10402.
21 Li H L, Eddaoudi M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279.
22 Chui S S Y, Lo S M F, Charmant J P H, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n [J]. Science, 1999, 283(5405): 1148-1150.
23 Deng H, Grunder S, Cordova K E, et al. Large-pore apertures in a series of metal-organic frameworks[J]. Science, 2012, 336(6084): 1018-1023.
24 Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554): 469-472.
25 Furukawa H, Cordova K E, O'Keeffe M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444.
26 Moghadam P Z, Li A, Liu X W, et al. Targeted classification of metal-organic frameworks in the Cambridge structural database (CSD)[J]. Chemical Science, 2020, 11(32): 8373-8387.
27 Hou Q Q, Zhou S, Wei Y Y, et al. Balancing the grain boundary structure and the framework flexibility through bimetallic metal-organic framework (MOF) membranes for gas separation[J]. Journal of the American Chemical Society, 2020, 142(21): 9582-9586.
28 Dakhchoune M, Villalobos L F, Semino R, et al. Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets[J]. Nature Materials, 2021, 20(3): 362-369.
29 Zhang S, Gui B, Ben T, et al. Switchable molecular sieving of a capped metal organic framework membrane[J]. Journal of Materials Chemistry A, 2020, 8(38): 19984-19990.
30 Ding M L, Flaig R W, Jiang H L, et al. Carbon capture and conversion using metal-organic frameworks and MOF-based materials[J]. Chemical Society Reviews, 2019, 48(10): 2783-2828.
31 Boyd P G, Chidambaram A, García-Díez E, et al. Data-driven design of metal-organic frameworks for wet flue gas CO2 capture[J]. Nature, 2019, 576(7786): 253-256.
32 Rojas S, Horcajada P. Metal-organic frameworks for the removal of emerging organic contaminants in water[J]. Chemical Reviews, 2020, 120(16): 8378-8415.
33 Wang Y, Yan J, Wen N, et al. Metal-organic frameworks for stimuli-responsive drug delivery[J]. Biomaterials, 2020, 230: 119619.
80 Zhang J H, Xie S M, Zi M, et al. Recent advances of application of porous molecular cages for enantioselective recognition and separation[J]. Journal of Separation Science, 2020, 43(1): 134-149.
81 Little M A, Cooper A I. The chemistry of porous organic molecular materials[J]. Advanced Functional Materials, 2020, 30(41): 1909842.
82 Hasell T, Cooper A I. Porous organic cages: soluble, modular and molecular pores[J]. Nature Reviews Materials, 2016, 1: 16053.
83 Duchamp D J, Marsh R E. The crystal structure of trimesic acid (benzene-1,3,5-tricarboxylic acid)[J]. Acta Crystallographica Section B, 1969, 25(1): 5-19.
84 He Y B, Xiang S C, Chen B L. A microporous hydrogen-bonded organic framework for highly selective C2H2/C2H4 separation at ambient temperature[J]. Journal of the American Chemical Society, 2011, 133(37): 14570-14573.
85 Nugent P S, Rhodus V L, Pham T, et al. A robust molecular porous material with high CO2 uptake and selectivity[J]. Journal of the American Chemical Society, 2013, 135(30): 10950-10953.
86 Li P, He Y, Arman H D, et al. A microporous six-fold interpenetrated hydrogen-bonded organic framework for highly selective separation of C2H4/C2H6[J]. Chemical Communications, 2014, 50(86): 13081-13084.
87 Lü J, Perez-Krap C, Suyetin M, et al. A robust binary supramolecular organic framework (SOF) with high CO2 adsorption and selectivity[J]. Journal of the American Chemical Society, 2014, 136(37): 12828-12831.
88 Zhang X, Wang J X, Li L B, et al. A rod-packing hydrogen-bonded organic framework with suitable pore confinement for benchmark ethane/ethylene separation[J]. Angewandte Chemie International Edition, 2021, 60(18): 10304-10310.
89 Liang J, Xing S, Brandt P, et al. A chemically stable cucurbit [6] uril-based hydrogen-bonded organic framework for potential SO2/CO2 separation[J]. Journal of Materials Chemistry A, 2020, 8(38): 19799-19804.
90 Zhu J Y, Yuan S S, Wang J, et al. Microporous organic polymer-based membranes for ultrafast molecular separations[J]. Progress in Polymer Science, 2020, 110: 101308.
91 Li P, He Y B, Guang J, et al. A homochiral microporous hydrogen-bonded organic framework for highly enantioselective separation of secondary alcohols[J]. Journal of the American Chemical Society, 2014, 136(2): 547-549.
92 Wang B, He R, Xie L H, et al. Microporous hydrogen-bonded organic framework for highly efficient turn-up fluorescent sensing of aniline[J]. Journal of the American Chemical Society, 2020, 142(28): 12478-12485.
93 Gong W, Chu D D, Jiang H, et al. Permanent porous hydrogen-bonded frameworks with two types of Brønsted acid sites for heterogeneous asymmetric catalysis[J]. Nature Communications, 2019, 10: 600.
94 Yang W, Wang J W, Wang H L, et al. Highly interpenetrated robust microporous hydrogen-bonded organic framework for gas separation[J]. Crystal Growth & Design, 2017, 17(11): 6132-6137.
95 Yin Q, Zhao P, Sa R J, et al. An ultra-robust and crystalline redeemable hydrogen-bonded organic framework for synergistic chemo-photodynamic therapy[J]. Angewandte Chemie, 2018, 130(26): 7817-7822.
96 Wang B, Lv X L, Lv J, et al. A novel mesoporous hydrogen-bonded organic framework with high porosity and stability[J]. Chemical Communications, 2019, 56(1): 66-69.
97 Wang Y J, Yin J B, Liu D, et al. Guest-tuned proton conductivity of a porphyrinylphosphonate-based hydrogen-bonded organic framework[J]. Journal of Materials Chemistry A, 2021, 9(5): 2683-2688.
98 Li P, He Y B, Zhao Y F, et al. A rod-packing microporous hydrogen-bonded organic framework for highly selective separation of C2H2/CO2 at room temperature[J]. Angewandte Chemie, 2015, 127(2): 584-587.
99 Yang W, Zhou W, Chen B L. A flexible microporous hydrogen-bonded organic framework[J]. Crystal Growth & Design, 2019, 19(9): 5184-5188.
100 Wang B, Lin R B, Zhang Z J, et al. Hydrogen-bonded organic frameworks as a tunable platform for functional materials[J]. Journal of the American Chemical Society, 2020, 142(34): 14399-14416.
34 Wei Y S, Zhang M, Zou R Q, et al. Metal-organic framework-based catalysts with single metal sites[J]. Chemical Reviews, 2020, 120(21): 12089-12174.
35 Xie L S, Skorupskii G, Dincă M. Electrically conductive metal-organic frameworks[J]. Chemical Reviews, 2020, 120(16): 8536-8580.
36 Yin H Q, Yin X B. Metal-organic frameworks with multiple luminescence emissions: designs and applications[J]. Accounts of Chemical Research, 2020, 53(2): 485-495.
37 Zhou S, Wei Y Y, Zhuang L B, et al. Introduction of metal precursors by electrodeposition for the in situ growth of metal-organic framework membranes on porous metal substrates[J]. Journal of Materials Chemistry A, 2017, 5(5): 1948-1951.
38 Sun Y W, Liu Y, Caro J, et al. In-plane epitaxial growth of highly c-oriented NH2-MIL-125(Ti) membranes with superior H2/CO2 selectivity[J]. Angewandte Chemie, 2018, 130(49): 16320-16325.
39 Guo H, Liu J Q, Li Y H, et al. Post-synthetic modification of highly stable UiO-66-NH2 membranes on porous ceramic tubes with enhanced H2 separation[J]. Microporous and Mesoporous Materials, 2021, 313: 110823.
40 Rong R, Sun Y W, Ji T T, et al. Fabrication of highly CO2/N2 selective polycrystalline UiO-66 membrane with two-dimensional transition metal dichalcogenides as zirconium source via tertiary solvothermal growth[J]. Journal of Membrane Science, 2020, 610: 118275.
41 Lu C J, Wang G, Wang K L, et al. Modified porous SiO2-supported Cu3(BTC)2 membrane with high performance of gas separation[J]. Materials (Basel, Switzerland), 2018, 11(7): E1207.
42 Hayashi M, Lee D T, de Mello M D, et al. ZIF-8 membrane permselectivity modification by manganese (Ⅱ) acetylacetonate vapor treatment[J]. Angewandte Chemie International Edition, 2021, 60(17): 9316-9320.
43 Qiao Z H, Liang Y Y, Zhang Z Q, et al. Ultrathin low-crystallinity MOF membranes fabricated by interface layer polarization induction[J]. Advanced Materials, 2020, 32(34): 2002165.
44 Yaghi O M. Reticular chemistry—construction, properties, and precision reactions of frameworks[J]. Journal of the American Chemical Society, 2016, 138(48): 15507-15509.
45 Yaghi O M. Reticular chemistry in all dimensions[J]. ACS Central Science, 2019, 5(8): 1295-1300.
46 Wang Z F, Zhang S N, Chen Y, et al. Covalent organic frameworks for separation applications[J]. Chemical Society Reviews, 2020, 49(3): 708-735.
47 Cote A P, Benin A I, Ockwig N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170.
48 Kandambeth S, Dey K, Banerjee R. Covalent organic frameworks: chemistry beyond the structure[J]. Journal of the American Chemical Society, 2019, 141(5): 1807-1822.
49 Evans A M, Castano I, Brumberg A, et al. Emissive single-crystalline boroxine-linked colloidal covalent organic frameworks[J]. Journal of the American Chemical Society, 2019, 141(50): 19728-19735.
50 Ma T, Kapustin E A, Yin S X, et al. Single-crystal X-ray diffraction structures of covalent organic frameworks[J]. Science, 2018, 361(6397): 48-52.
51 Li Y, Wang C, Ma S J, et al. Fabrication of hydrazone-linked covalent organic frameworks using alkyl amine as building block for high adsorption capacity of metal ions[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11706-11714.
52 Wei S C, Zhang F, Zhang W B, et al. Semiconducting 2D triazine-cored covalent organic frameworks with unsubstituted olefin linkages[J]. Journal of the American Chemical Society, 2019, 141(36): 14272-14279.
53 Geng K Y, He T, Liu R Y, et al. Covalent organic frameworks: design, synthesis, and functions[J]. Chemical Reviews, 2020, 120(16): 8814-8933.
54 Dey K, Pal M, Rout K C, et al. Selective molecular separation by interfacially crystallized covalent organic framework thin films[J]. Journal of the American Chemical Society, 2017, 139(37): 13083-13091.
55 Huang N, Krishna R, Jiang D L. Tailor-made pore surface engineering in covalent organic frameworks: systematic functionalization for performance screening[J]. Journal of the American Chemical Society, 2015, 137(22): 7079-7082.
56 Ding S Y, Wang W. Covalent organic frameworks (COFs): from design to applications[J]. Chemical Society Reviews, 2013, 42(2): 548-568.
57 Segura J L, Royuela S, Mar Ramos M. Post-synthetic modification of covalent organic frameworks[J]. Chemical Society Reviews, 2019, 48(14): 3903-3945.
58 Yuan Y, Zhu G S. Porous aromatic frameworks as a platform for multifunctional applications[J]. ACS Central Science, 2019, 5(3): 409-418.
59 Ben T, Ren H, Ma S, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area[J]. Angewandte Chemie International Edition, 2009, 48(50): 9457-9460.
60 Tian Y Y, Zhu G S. Porous aromatic frameworks (PAFs)[J]. Chemical Reviews, 2020, 120(16): 8934-8986.
61 Ma T T, Zhao X, Matsuo Y, et al. Fluorescein-based fluorescent porous aromatic framework for Fe3+ detection with high sensitivity[J]. Journal of Materials Chemistry C, 2019, 7(8): 2327-2332.
62 Tian Z Q, Dai S, Jiang D E. Confined ionic liquid in an ionic porous aromatic framework for gas separation[J]. ACS Applied Polymer Materials, 2019, 1(1): 95-102.
101 林祖金, 曹荣. 多孔氢键有机框架(HOFs): 现状与挑战[J]. 化学学报, 2020, 78(12): 1309-1335.
Lin Z J, Cao R. Porous hydrogen-bonded organic frameworks(HOFs): status and challenges[J]. Acta Chimica Sinica, 2020, 78(12): 1309-1335.
102 Lin R B, He Y, Li P, et al. Multifunctional porous hydrogen-bonded organic framework materials[J]. Chemical Society Reviews, 2019, 48(5): 1362-1389.
103 Huang A S, Bux H, Steinbach F, et al. Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker[J]. Angewandte Chemie International Edition, 2010, 49(29): 4958-4961.
104 Liu Y, Wang N Y, Pan J H, et al. In situ synthesis of MOF membranes on ZnAl-CO3 LDH buffer layer-modified substrates[J]. Journal of the American Chemical Society, 2014, 136(41): 14353-14356.
105 Liang B, Wang H, Shi X, et al. Microporous membranes comprising conjugated polymers with rigid backbones enable ultrafast organic-solvent nanofiltration[J]. Nature Chemistry, 2018, 10(9): 961-967.
106 Bux H, Liang F Y, Li Y S, et al. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis[J]. Journal of the American Chemical Society, 2009, 131(44): 16000-16001.
107 Liu Q, Wang N Y, Caro J, et al. Bio-inspired polydopamine: a versatile and powerful platform for covalent synthesis of molecular sieve membranes[J]. Journal of the American Chemical Society, 2013, 135(47): 17679-17682.
108 Jiang X, Li S W, Bai Y P, et al. Ultra-facile aqueous synthesis of nanoporous zeolitic imidazolate framework membranes for hydrogen purification and olefin/paraffin separation[J]. Journal of Materials Chemistry A, 2019, 7(18): 10898-10904.
109 Fu J R, Das S, Xing G L, et al. Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2[J]. Journal of the American Chemical Society, 2016, 138(24): 7673-7680.
110 Jiang Y, Ryu G H, Joo S H, et al. Porous two-dimensional monolayer metal-organic framework material and its use for the size-selective separation of nanoparticles[J]. ACS Applied Materials & Interfaces, 2017, 9(33): 28107-28116.
111 Motoyama S, Makiura R, Sakata O, et al. Highly crystalline nanofilm by layering of porphyrin metal-organic framework sheets[J]. Journal of the American Chemical Society, 2011, 133(15): 5640-5643.
112 Makiura R, Konovalov O. Interfacial growth of large-area single-layer metal-organic framework nanosheets[J]. Sci. Rep., 2013, 3: 2506.
113 Shinde D, Sheng G, Li X, et al. Crystalline 2D covalent organic framework membranes for high-flux organic solvent nanofiltration[J]. Journal of the American Chemical Society, 2018, 140(43): 14342-14349.
114 Wang H, Chen L, Yang H, et al. Brønsted acid mediated covalent organic framework membranes for efficient molecular separation[J]. Journal of Materials Chemistry A, 2019, 7(35): 20317-20324.
115 Khan N A, Zhang R N, Wu H, et al. Solid-vapor interface engineered covalent organic framework membranes for molecular separation[J]. Journal of the American Chemical Society, 2020, 142(31): 13450-13458.
116 Villalobos L F, Huang T F, Peinemann K V. Cyclodextrin films with fast solvent transport and shape-selective permeability[J]. Advanced Materials, 2017, 29(26): 1606641.
117 Richardson J J, Bjornmalm M, Caruso F. Technology-driven layer-by-layer assembly of nanofilms[J]. Science, 2015, 348(6233): aaa2491.
118 Richardson J J, Cui J W, Björnmalm M, et al. Innovation in layer-by-layer assembly[J]. Chemical Reviews, 2016, 116(23): 14828-14867.
119 Wang S, Yang L, He G, et al. Two-dimensional nanochannel membranes for molecular and ionic separations[J]. Chemical Society Reviews, 2020, 49(4): 1071-1089.
120 Shekhah O, Swaidan R, Belmabkhout Y, et al. The liquid phase epitaxy approach for the successful construction of ultra-thin and defect-free ZIF-8 membranes: pure and mixed gas transport study[J]. Chemical Communications, 2014, 50(17): 2089-2092.
121 Nagaraju D, Bhagat D G, Banerjee R, et al. In situ growth of metal-organic frameworks on a porous ultrafiltration membrane for gas separation[J]. Journal of Materials Chemistry A, 2013, 1(31): 8828-8835.
122 Lee D J, Li Q M, Kim H, et al. Preparation of Ni-MOF-74 membrane for CO2 separation by layer-by-layer seeding technique[J]. Microporous and Mesoporous Materials, 2012, 163: 169-177.
123 Nijem N, Fürsich K, Kelly S T, et al. HKUST-1 thin film layer-by-layer liquid phase epitaxial growth: film properties and stability dependence on layer number[J]. Crystal Growth & Design, 2015, 15(6): 2948-2957.
124 Li G, Zhang K, Tsuru T. Two-dimensional covalent organic framework (COF) membranes fabricated via the assembly of exfoliated COF nanosheets[J]. ACS Applied Materials & Interfaces, 2017, 9(10): 8433-8436.
125 刘露月, 吕荥宾, 刘壮, 等. 层层堆叠石墨烯膜的稳定性强化及层间距调控研究进展[J]. 膜科学与技术, 2020, 40(1): 228-239.
Liu L Y, Lyu X B, Liu Z, et al. Research progress on the stability improvement and interlayer-spacing regulation of graphene-based membranes with laminar structures[J]. Membrane Science and Technology, 2020, 40(1): 228-239.
126 Kuehl V, Yin J S, Duong P H H, et al. A highly ordered nanoporous, two-dimensional covalent organic framework with modifiable pores, and its application in water purification and ion sieving[J]. Journal of the American Chemical Society, 2018, 140(51): 18200-18207.
127 Zhang W X, Zhang L M, Zhao H F, et al. A two-dimensional cationic covalent organic framework membrane for selective molecular sieving[J]. Journal of Materials Chemistry A, 2018, 6(27): 13331-13339.
128 Zhou S, Wei Y, Li L, et al. Paralyzed membrane: current-driven synthesis of a metal-organic framework with sharpened propene/propane separation[J]. Science Advances, 2018, 4(10): eaau1393.
129 Cao L, He X Y, Jiang Z Y, et al. Channel-facilitated molecule and ion transport across polymer composite membranes[J]. Chemical Society Reviews, 2017, 46(22): 6725-6745.
130 Wang H J, Wang M D, Liang X, et al. Organic molecular sieve membranes for chemical separations[J]. Chemical Society Reviews, 2021, 50: 5468-5516.
131 朱育丹, 陆小华, 谢文龙, 等. 基于限域传质机制的膜过程定量描述的研究进展[J]. 科学通报, 2017, 62(Z1): 223-232.
Zhu Y D, Lu X H, Xie W L, et al. The progress of quantitatively description of membrane process based on the mechanism of nanoconfined mass transfer[J]. Chinese Science Bulletin, 2017, 62(Z1): 223-232.
132 金万勤, 徐南平. 限域传质分离膜[J]. 化工学报, 2018, 69(1): 50-56.
Jin W Q, Xu N P. Membrane separation based on mechanism of confined mass transfer[J]. CIESC Journal, 2018, 69(1): 50-56.
133 Bui M, Adjiman C S, Bardow A, et al. Carbon capture and storage (CCS): the way forward[J]. Energy & Environmental Science, 2018, 11(5): 1062-1176.
134 D'Alessandro D, Smit B, Long J. Carbon dioxide capture: prospects for new materials[J]. Angewandte Chemie International Edition, 2010, 49(35): 6058-6082.
135 Ban Y J, Li Z J, Li Y S, et al. Confinement of ionic liquids in nanocages: tailoring the molecular sieving properties of ZIF-8 for membrane-based CO2 capture[J]. Angewandte Chemie International Edition, 2015, 54(51): 15483-15487.
136 Cacho-Bailo F, Catalan-Aguirre S, Etxeberria-Benavides M, et al. Metal-organic framework membranes on the inner-side of a polymeric hollow fiber by microfluidic synthesis[J]. Journal of Membrane Science, 2015, 476: 277-285.
137 Kong L Y, Zhang X F, Liu Y G, et al. In situ fabrication of high-permeance ZIF-8 tubular membranes in a continuous flow system[J]. Materials Chemistry and Physics, 2014, 148(1/2): 10-16.
138 Wang Y H, Jin H, Ma Q, et al. A MOF glass membrane for gas separation[J]. Angewandte Chemie International Edition, 2020, 59(11): 4365-4369.
139 Rui Z B, James J B, Kasik A, et al. Metal-organic framework membrane process for high purity CO2 production[J]. AIChE Journal, 2016, 62(11): 3836-3841.
140 Hou Q Q, Wu Y, Zhou S, et al. Ultra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separation[J]. Angewandte Chemie International Edition, 2019, 58(1): 327-331.
141 Tong M M, Zhang Y D, Yan T, et al. Computational insights on the role of nanochannel environment in the CO2/CH4 and H2/CH4 separation using restacked covalent organic framework membranes[J]. The Journal of Physical Chemistry C, 2019, 123(37): 22949-22958.
142 Yan T, Lan Y S, Tong M M, et al. Screening and design of covalent organic framework membranes for CO2/CH4 separation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1220-1227.
143 Baena-Moreno F M, Rodríguez-Galán M, Vega F, et al. Carbon capture and utilization technologies: a literature review and recent advances[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 41(12): 1403-1433.
144 Feng Y, Wang Z K, Fan W D, et al. Engineering the pore environment of metal–organic framework membranes via modification of the secondary building unit for improved gas separation[J]. Journal of Materials Chemistry A, 2020, 8(26): 13132-13141.
145 Liu W, Jiang S D, Yan Y G, et al. A solution-processable and ultra-permeable conjugated microporous thermoset for selective hydrogen separation[J]. Nature Communications, 2020, 11: 1633.
146 Fan H, Peng M, Strauss I, et al. MOF-in-COF molecular sieving membrane for selective hydrogen separation[J]. Nature Communications, 2021, 12(1): 38.
147 Li Y, Liu H, Wang H, et al. GO-guided direct growth of highly oriented metal-organic framework nanosheet membranes for H2/CO2 separation[J]. Chemical Science, 2018, 9(17): 4132-4141.
148 Peng Y, Li Y, Ban Y, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes[J]. Science, 2014, 346(6215): 1356-1359.
149 Fan H W, Peng M H, Strauss I, et al. High-flux vertically aligned 2D covalent organic framework membrane with enhanced hydrogen separation[J]. Journal of the American Chemical Society, 2020, 142(15): 6872-6877.
150 Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437.
151 Zhang C, Lively R P, Zhang K, et al. Unexpected molecular sieving properties of zeolitic imidazolate framework-8[J]. The Journal of Physical Chemistry Letters, 2012, 3(16): 2130-2134.
152 潘宜昌, 邢卫红. 丙烯/丙烷分离的ZIF-8膜研究进展[J]. 化工进展, 2020, 39(6): 2036-2048.
Pan Y C, Xing W H. Recent progress of ZIF-8 membrane for propylene/propane separation[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2036-2048.
153 Pan Y C, Li T, Lestari G, et al. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes[J]. Journal of Membrane Science, 2012, 390/391: 93-98.
154 Kwon H T, Jeong H K, Lee A S, et al. Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances[J]. Journal of the American Chemical Society, 2015, 137(38): 12304-12311.
155 Zhao Y L, Wei Y Y, Lyu L X, et al. Flexible polypropylene-supported ZIF-8 membranes for highly efficient propene/propane separation[J]. Journal of the American Chemical Society, 2020, 142(50): 20915-20919.
156 Ma Q, Mo K, Gao S S, et al. Ultrafast semi-solid processing of highly durable ZIF-8 membranes for propylene/propane separation[J]. Angewandte Chemie, 2020, 132(49): 22093-22098.
157 Anderson R, Schweitzer B, Wu T, et al. Molecular simulation insights on Xe/Kr separation in a set of nanoporous crystalline membranes[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 582-592.
158 Sumer Z, Keskin S. Molecular simulations of MOF adsorbents and membranes for noble gas separations[J]. Chemical Engineering Science, 2017, 164: 108-121.
159 Wu T, Feng X H, Elsaidi S K, et al. Zeolitic imidazolate framework-8 (ZIF-8) membranes for Kr/Xe separation[J]. Industrial & Engineering Chemistry Research, 2017, 56(6): 1682-1686.
160 Wu T, Lucero J, Sinnwell M A, et al. Recovery of xenon from air over ZIF-8 membranes[J]. Chemical Communications, 2018, 54(65): 8976-8979.
161 Lucero J M, Carreon M A. Separation of light gases from xenon over porous organic cage membranes[J]. ACS Applied Materials & Interfaces, 2020, 12(28): 32182-32188.
[1] 吴中杰, 刘则艳, 谢连科, 崔美, 黄仁亮. 聚偏氟乙烯膜亲水改性及其乳液分离与重金属吸附应用[J]. 化工学报, 2021, 72(S1): 421-429.
[2] 夏东, 黄朋, 李恒. 水热法制备三维导电石墨烯气凝胶及其焦耳热性能研究[J]. 化工学报, 2021, 72(7): 3839-3848.
[3] 杜娟, 龚志强, 黄曹兴, 梁辰, 姚双全, 刘杨. 树脂吸附-超滤协同分离甘蔗渣碱法半纤维素[J]. 化工学报, 2021, 72(4): 2139-2147.
[4] 王艳芳,毛恒,蔡玮玮,张傲率,徐李昊,赵之平. ZIF-L/PDMS混合基质膜蒸气渗透耦合发酵强化乙醇生产效率的研究[J]. 化工学报, 2021, 72(10): 5226-5236.
[5] 王琛璐, 王艳磊, 赵秋, 吕玉苗, 霍锋, 何宏艳. 低维纳米受限离子液体的研究进展[J]. 化工学报, 2021, 72(1): 366-383.
[6] 李建惠, 兰天昊, 陈杨, 杨江峰, 李立博, 李晋平. MOF复合材料在气体吸附分离中的研究进展[J]. 化工学报, 2021, 72(1): 167-179.
[7] 赵云, 向中华. 微流控制备金属/共价有机框架功能材料研究进展[J]. 化工学报, 2020, 71(6): 2547-2563.
[8] 亓士超, 朱蓉蓉, 刘昕, 薛丁铭, 刘晓勤, 孙林兵. 乙二胺不同掺杂模式下多孔有机聚合物对CO2的吸附[J]. 化工学报, 2020, 71(4): 1666-1675.
[9] 陈立, 周才龙, 杜京城, 周威, 谭陆西, 董立春. 超疏水多孔材料的研究进展[J]. 化工学报, 2020, 71(10): 4502-4519.
[10] 李龙, 葛天舒, 吴宣楠, 代彦军. 硅胶嵌入多孔纸基对苯蒸气吸附性能[J]. 化工学报, 2019, 70(3): 951-959.
[11] 李甲, 谷景华, 殷文杰, 李泽耀. ZnO修饰的不锈钢网支撑体上ZIF-8膜的制备[J]. 化工学报, 2018, 69(8): 3724-3731.
[12] 马卫园, 张东. 磷酸镁多孔材料的制备及其在结构超级电容器的应用[J]. 化工学报, 2018, 69(10): 4438-4448.
[13] 李振环, 孙海锋, 张晓晨, 夏新林, 陈学. 圆柱状金属泡沫多孔前置体的气动热效应分析[J]. 化工学报, 2017, 68(S1): 260-265.
[14] 刘朋飞, 张所瀛, 杨祝红, 陆小华. MOF作模板制备多孔Au/CuxO催化剂及其CO氧化性能[J]. 化工学报, 2016, 67(6): 2325-2331.
[15] 祁光霞, 雷雪飞, 孙方研, 孙应龙, 李磊, 袁超, 王邦达, 王毅. 粉煤灰源C-S-H吸附U(Ⅵ)性能及机理[J]. 化工学报, 2016, 67(10): 4255-4263.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王微微. 油气两相流空隙率测量[J]. CIESC Journal, 2007, 15(3): 339 -344 .
[2] 陈晶瑜, 张磊, 陈金春, 陈国强. Ralstonia eutropha PHB4重组菌合成PHA共聚物及性质测定[J]. CIESC Journal, 2007, 15(3): 391 -396 .
[3] 李勇飞, 严旭辉, 江国防, 刘强, 宋建新, 郭灿城. 金属卟啉催化的甲苯氧化及工艺优化[J]. CIESC Journal, 2007, 15(3): 453 -457 .
[4] 尤学一, H.J.Bart. 搅拌萃取塔内单相流动不同雷诺平均湍流模型结果的比较[J]. CIESC Journal, 2003, 11(3): 362 -366 .
[5] 王娟, 沈平孃, 沈永嘉. 微波辅助萃取中药刺五加中有效成分的研究[J]. CIESC Journal, 2003, 11(2): 231 -233 .
[6] 谢方友, 朱明乔, 刘建青, 何潮洪. 在脉冲填料柱中萃取硫酸铵溶液中的己内酰胺[J]. CIESC Journal, 2002, 10(6): 677 -680 .
[7] 洪定一. 化工进展——中国石化工业回顾[J]. CIESC Journal, 2001, 9(3): 229 -234 .
[8] 孙建中, 何斯征, 周其云. 丁二烯气相聚合过程中聚合物颗粒增长的动态研究[J]. CIESC Journal, 2001, 9(2): 217 -220 .
[9] 周立芳, 钱积新. 多频多变量预测控制系统的IMC结构及其改进算法[J]. CIESC Journal, 2001, 9(3): 273 -279 .
[10] 王晓莲, 王淑莹, 彭永臻. A2O工艺缺氧生物磷去除[J]. CIESC Journal, 2005, 13(4): 516 -521 .