化工学报 ›› 2021, Vol. 72 ›› Issue (8): 4267-4278.doi: 10.11949/0438-1157.20210464

• 表面与界面工程 • 上一篇    下一篇

基于F-K滑移流模型的柱面微槽气浮密封浮升能力分析

陆俊杰1(),张炜1(),马浩2   

  1. 1.浙江大学宁波理工学院机械与能源工程学院,浙江 宁波 315010
    2.哈尔滨商业大学轻工学院,黑龙江 哈尔滨 150028
  • 收稿日期:2021-04-02 修回日期:2021-05-23 出版日期:2021-08-05 发布日期:2021-08-05
  • 通讯作者: 张炜 E-mail:loveljj4566@163.com;zhangwei_nit@163.com
  • 作者简介:陆俊杰(1990—),男,博士,讲师,loveljj4566@163.com
  • 基金资助:
    国家自然科学基金项目(51905480);宁波“科技创新2025”重大专项(2020Z112);宁波市自然科学基金项目(2019A610161)

Floating performance of cylindrical microgroove gas floating seal based on F-K slip flow model

Junjie LU1(),Wei ZHANG1(),Hao MA2   

  1. 1.College of Mechanical and Electrical and Energy Engineering, Zhejiang University Ningbo Institute of Technology, Ningbo 315010, Zhejiang, China
    2.College of Light Industry, Harbin University of Commerce, Harbin 150028, Heilongjiang, China
  • Received:2021-04-02 Revised:2021-05-23 Published:2021-08-05 Online:2021-08-05
  • Contact: Wei ZHANG E-mail:loveljj4566@163.com;zhangwei_nit@163.com

摘要:

由于气浮密封薄膜引发的滑移流现象频发,本文针对一种新型柱面螺旋槽气浮密封,基于线性化Boltzmann方程(F-K 模型),引入流量因子,建立稀薄气体润滑的F-K滑移流模型。采用高精度八点差分法和Newton-Raphson迭代法求解气膜压力,解决了表面槽-台阶跃、径向偏心与极薄气膜三者耦合下对求解发散和计算精度的影响。将计算结果与现有研究对比,并考察了气体滑移流效应与运行参数的内在关联,研究结果验证了新型柱面螺旋槽气浮密封在高速、低压、小膜厚和大偏心下具有较为明显的滑移流效应;此外,虽然槽深、槽数和槽长的增加提高了气膜浮力,但是增强了槽内滑移流动的响应。研究结果为拓宽动压密封应用范围提供理论了基础。

关键词: 滑移流模型, 螺旋槽, 气膜, 柱面密封, 润滑性能

Abstract:

Due to the frequent occurrence of slip flow caused by ultra-thin gas film and high-altitude rarefied gas in air-space field, a new type of cylindrical spiral groove air floating seal is designed in this paper. Based on the micro-scale characteristic size of the seal and the mechanism of airflow lubrication, the modified Reynolds equation of rarefied gas lubrication is established by simultaneously linearizing Boltzmann equation (F-K model) and introducing flow factor. The high-precision eight-point difference method and Newton-Raphson iterative method are used to solve the gas film pressure, and the F-K slip flow model is constructed, which solves the influence of the coupling of surface groove-step jump, radial eccentricity and ultra-thin gas film on the solution divergence and calculation accuracy. Then, the calculated results are compared with the existing studies, and the internal relationship between gas slip flow effect and operation parameters is investigated. The results show that the new cylindrical spiral groove air floating seal has obvious slip flow effect at high speed, low pressure, small film thickness and large eccentricity. At the same time, the dynamic pressure effect of cylindrical spiral groove air floating seal is caused by the dynamic pressure wedge caused by groove blocking effect and groove-step change, and the convergence wedge caused by eccentricity.On the other hand, the increase of groove depth, groove number and groove length increases the buoyancy of gas film but enhances the response of slip flow in the groove. The research results provide a theoretical basis for broadening the application range of dynamic seal.

Key words: slip flow model, spiral groove, gas film, cylindrical seal, lubrication performance

中图分类号: 

  • TB 42

图1

新型柱面螺旋槽气浮密封结构图"

图2

新型柱面螺旋槽气浮密封物理模型"

图3

八点差分节点示意图"

表1

柱面气浮密封工况参数和螺旋槽结构参数"

ParametersSymbolsValues
outer diameter of rotating ringR0.025 m
length of floating ringL0.052 m
average gapC4 × 10-6 m
eccentricityε0.5
rotating speednr50000 r/min
groove depthhc8 × 10-6 m
groove numbernc10
spiral angleβ30°
groove lengthlc0.025 m
gas pressurep0.3 MPa

图4

网格无关性验证"

表2

文献[27]中的密封实验参数"

ParametersSymbolsValues
outer diameter of floating ringR0.0062 m
length of floating ringL0.0144 m
initial film thicknessC6.5 × 10-5 m
eccentricityε0.5
depth of groovehc4 × 10-6 m
number of groovesnc10
spiral angleβ60°
length of groovelc0.007 m

图5

F-K滑移流模型计算结果与文献[27]实验结果的比较"

图6

无滑移流气膜压力(a)与F-K滑移流模型气膜压力(b)"

图7

无滑移流与F-K滑移流模型在气膜厚度4 μm和偏心率0.5下气膜浮升力随转速和压力的变化规律"

图8

无滑移流与F-K滑移流模型的气膜浮升力随膜厚与偏心率的变化规律"

图9

无滑移流与F-K滑移流模型的气膜浮升力随槽深的变化规律"

图10

无滑移流与F-K滑移流模型的气膜浮升力随槽数的变化规律"

图11

无滑移流与F-K滑移流模型的气膜浮升力随槽长的变化规律"

1 Steinetz B M, Hendricks R C. Engine seal technology requirements to meet NASA's Advanced Subsonic Technology program goals[J]. Journal of Propulsion and Power, 1996, 12(4): 786-793.
2 Ludwig L, Johnson R. Sealing technology for aircraft gas turbine engines[C]//10th Propulsion Conference. Reston, Virigina: AIAA, 1974.
3 Liang A D, Shapiro W, Numerical Aggarwal B., analytical, experimental study of fluid dynamic forces in seals[R]. NASA CR, 2004
4 Bird G A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows[M]. New York: Oxford Science Publications, 1994.
5 Fan J, Shen C. Statistical simulation of low-speed rarefied gas flows[J]. Journal of Computational Physics, 2001, 167(2): 393-412.
6 Alexander F J, Garcia A L. The direct simulation Monte Carlo method[J]. Computers in Physics, 1997, 11(6): 588-593.
7 Bhattacharya D K, Lie G C. Molecular-dynamics simulations of nonequilibrium heat and momentum transport in very dilute gases[J]. Physical Review Letters, 1989, 62(8): 897-900.
8 陈东菊, 周帅, 杨智, 等. 稀薄效应对空气静压止推轴承性能影响[J]. 四川大学学报(工程科学版), 2016, 48(1): 194-199.
Chen D J, Zhou S, Yang Z, et al. Influence of flow factor in gas rarefied effects to aerostatic thrust bearing performance[J]. Journal of Sichuan University (Engineering Science Edition), 2016, 48(1): 194-199.
9 Burgdorfer A. The influence of the molecular mean free path on the performance of hydrodynamic gas lubricated bearings[J]. Journal of Basic Engineering, 1959, 81(1): 94-98.
10 Hsia Y T, Domoto G A. An experimental investigation of molecular rarefaction effects in gas lubricated bearings at ultra-low clearances[J]. Journal of Lubrication Technology, 1983, 105(1): 120-129.
11 Mitsuya Y. Modified Reynolds equation for ultra-thin film gas lubrication using 1.5-order slip-flow model and considering surface accommodation coefficient[J]. Journal of Tribology, 1993, 115(2): 289-294.
12 Bahukudumbi P, Beskok A. A phenomenological lubrication model for the entire Knudsen regime[J]. Journal of Micromechanics and Microengineering, 2003, 13(6): 873-884.
13 Fukui S, Kaneko R. Analysis of ultra-thin gas film lubrication based on linearized Boltzmann equation (2): Influence of accommodation coefficient [J]. Transactions of the Japan Society of Mechanical Engineers Series C, 1987, 53(492): 1807-1814.
14 黄平. 润滑数值计算方法[M]. 北京: 高等教育出版社, 2012.
Huang P. Numerical Calculation Method of Lubrication [M]. Beijing: Higher Education Press, 2012.
15 Gu X J, Zhang H J, Emerson D R. A new extended Reynolds equation for gas bearing lubrication based on the method of moments[J]. Microfluidics and Nanofluidics, 2016, 20(1): 1-12.
16 Yamakiri H, Sasaki S, Kurita T, et al. Effects of laser surface texturing on friction behavior of silicon nitride under lubrication with water[J]. Tribology International, 2011, 44(5): 579-584.
17 Shi L P, Wang X Y, Su X, et al. Comparison of the load-carrying performance of mechanical gas seals textured with microgrooves and microdimples[J]. Journal of Tribology, 2016, 138(2): 021701.
18 Kovalchenko A, Ajayi O, Erdemir A, et al. The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact[J]. Tribology International, 2005, 38(3): 219-225.
19 张小青. 微涡轮发动机气体轴承-转子系统非线性动力学研究[D]. 北京: 北京理工大学, 2014.
Zhang X Q. Study on nonlinear dynamics of gas bearing-rotor system of micro-turbine engine [D]. Beijing: Beijing Institute of Technology, 2014.
20 Childs D W, Leland T. Rotordynamic-coefficient and leakage characteristics for hole-pattern-stator annular gas seals—measurements versus predictions[J]. Journal of Tribology, 2004, 126(2): 326-333.
21 Nagai K, Kaneko S, Taura H, et al. Numerical and experimental analyses of static characteristics for liquid annular seals with helical grooves in seal stator[J]. Journal of Tribology, 2018, 140(3): 052201.
22 Nagai K, Kaneko S, Taura H, et al. Numerical and experimental analyses of dynamic characteristics for liquid annular seals with helical grooves in seal stator[J]. Journal of Tribology, 2018, 140(5): 0522011.
23 Zhang C W, Gu L, Wang J Y, et al. Effect of air rarefaction on the contact behaviors of air lubricated spiral-groove thrust micro-bearings[J]. Tribology International, 2017, 111: 167-175.
24 Ma C H, Bai S X, Peng X D. Thermoelastohydrodynamic characteristics of T-grooves gas face seals[J]. International Journal of Heat and Mass Transfer, 2016, 102: 277-286.
25 Bai S X. Thermoelastohydrodynamic gas lubrication of spiral-groove face seals: modeling and analysis of vapor condensation[J]. Tribology Transactions, 2017, 60(4): 719-728.
26 陆俊杰, 张炜, 谢方民, 等. 一种自适应柱状密封气膜特性分析[J]. 化工学报, 2020, 71: 346-354.
Lu J J, Zhang W, Xie F M, et al. Performance analysis of gas film of adaptive cylindrical seal[J]. CIESC Journal, 2020, 71: 346-354.
27 Choi W C, Shin Y H, Choi J H. Numerical analysis of stiffness of self-acting air bearings of various curvatures[J]. JSME International Journal Series C, 2001, 44(2): 470-475.
28 Ruan B. Finite element analysis of the spiral groove gas face seal at the slow speed and the low pressure conditions—slip flow consideration[J]. Tribology Transactions, 2000, 43(3): 411-418.
29 Zhang W M, Meng G, Huang H, et al. Characteristics analysis and dynamic responses of micro-gas-lubricated journal bearings with a new slip model[J]. Journal of Physics D: Applied Physics, 2008, 41(15): 155305.
[1] 刘献飞, 王恒, 王方, 李志强, 朱彩霞, 张浩飞. 单螺杆膨胀机螺旋槽道内液膜分布均匀特性[J]. 化工学报, 2021, 72(S1): 336-341.
[2] 商浩, 陈源, 李孝禄, 王冰清, 李运堂, 彭旭东. 膜厚扰动下的非线性效应对干气密封性能影响研究[J]. 化工学报, 2021, 72(4): 2213-2222.
[3] 于辰,江锦波,赵文静,李纪云,彭旭东,王玉明. 基于微段组合的干气密封端面型槽结构模型及其参数影响[J]. 化工学报, 2021, 72(10): 5294-5309.
[4] 陆俊杰, 张炜, 谢方民, 焦永峰. 一种自适应柱状密封气膜特性分析[J]. 化工学报, 2020, 71(S1): 346-354.
[5] 俞树荣, 丁俊华, 王世鹏, 刘红, 丁雪兴, 孙宝财. 柱面密封气膜动压效应模拟及试验[J]. 化工学报, 2020, 71(7): 3220-3228.
[6] 孟祥铠, 江莹莹, 赵文静, 彭旭东. 螺旋槽液膜密封热流体动力润滑性能分析[J]. 化工学报, 2019, 70(4): 1512-1521.
[7] 陈传刚, 丁雪兴, 陆俊杰, 张伟政, 陈金林. 摩擦副界面微造型序列对气体密封性能的影响[J]. 化工学报, 2019, 70(3): 1016-1026.
[8] 杨文静, 郝木明, 曹恒超, 袁俊马, 李晗. 基于质量守恒边界条件的下游泵送螺旋槽液膜密封空化分析[J]. 化工学报, 2018, 69(9): 3932-3943.
[9] 曹恒超, 郝木明, 杨文静, 汪艳红, 李勇凡, 徐鲁帅. 双列螺旋槽液膜密封相变现象及性能[J]. 化工学报, 2018, 69(5): 2110-2119.
[10] 马学忠, 孟祥铠, 王玉明, 赵文静, 沈明学, 彭旭东. 机械端面密封反向螺旋槽空化效应与泄漏控制机理[J]. 化工学报, 2018, 69(4): 1558-1568.
[11] 丁雪兴, 贺振泓, 张伟政, 陆俊杰, 苗春昊. 柱面螺旋槽气膜密封微尺度流动场稳态特性分析[J]. 化工学报, 2018, 69(4): 1537-1546.
[12] 许恒杰, 宋鹏云, 毛文元, 邓强国, 孙雪剑. 层流状态下高压高转速二氧化碳干气密封的惯性效应分析[J]. 化工学报, 2018, 69(10): 4311-4323.
[13] 李振涛, 黄佰朋, 郝木明, 孙鑫晖, 王赟磊, 杨文静. 周向斜面台阶螺旋槽液膜密封流体动压性能[J]. 化工学报, 2017, 68(5): 2016-2026.
[14] 彭旭东, 宗聪, 江锦波. 干气密封单向螺旋槽及其衍生结构功能演变进展[J]. 化工学报, 2017, 68(4): 1271-1281.
[15] 王赟磊, 郝木明, 李振涛, 李勇凡, 孙鑫晖, 徐鲁帅. 基于JFO空化和幂律模型的螺旋槽液膜密封流体动压特性[J]. 化工学报, 2017, 68(12): 4665-4674.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘植昌, 孟祥海, 徐春明, 高金森. 重油催化裂解汽柴油二次裂解性能研究[J]. CIESC Journal, 2007, 15(3): 309 -314 .
[2] 黄福明,张国伟,胡春圃,应圣康. 硅溶胶/苯乙烯-丙烯酸酯共聚物无机-有机杂化水分散液的制备和表征[J]. CIESC Journal, 2005, 13(6): 816 -823 .
[3] 郑裕国, 陈小龙, 汪钊, 沈寅初. 低高径比外循环气升式生物反应器带渣发酵生产有效霉素[J]. CIESC Journal, 2004, 12(1): 102 -107 .
[4] 秦炜, 李振宇, 汪敏, 戴猷元. 三烷基胺萃取氨基磺酸及其废水的特性研究[J]. CIESC Journal, 2004, 12(1): 137 -142 .
[5] 李良智, 乔斌, 元英进. 氮源对利迪链菌素生产及相关次级代谢物分布的影响[J]. CIESC Journal, 2007, 15(3): 403 -410 .
[6] 刘亚青, 赵贵哲. 三聚氯化磷腈微胶囊阻燃剂/聚丙烯复合材料的性能研究[J]. CIESC Journal, 2007, 15(3): 429 -432 .
[7] 孙国刚, 时铭显. 喷嘴进料对催化裂化提升管流动行为的影响[J]. CIESC Journal, 2003, 11(6): 638 -642 .
[8] 王宏智, 姚素薇, 张卫国. 电沉积Ni-W梯度镀层及其结构表征[J]. CIESC Journal, 2003, 11(3): 348 -351 .
[9] 尚智, 杨瑞昌, FUKUDA Kenji, 钟勇, 巨泽建. 用扩散流动模型分析悬浮床内的气固两相向上流动[J]. CIESC Journal, 2003, 11(5): 497 -503 .
[10] 蔡振云, 卢祖国, 李小波. 用管式反应技术制备乙二醇乙醚乙酸酯[J]. CIESC Journal, 2003, 11(3): 338 -340 .