化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2552-2562.DOI: 10.11949/0438-1157.20220087

• 流体力学与传递现象 • 上一篇    下一篇

超声微反应器内气液传质过程的介尺度强化机制

许非石(),杨丽霞,陈光文()   

  1. 中国科学院大连化学物理研究所,辽宁 大连 116023
  • 收稿日期:2022-01-17 修回日期:2022-02-11 出版日期:2022-06-05 发布日期:2022-06-30
  • 通讯作者: 陈光文
  • 作者简介:许非石(1990—),男,博士后,xufeishi@dicp.ac.cn
  • 基金资助:
    国家自然科学基金项目(92034303);中国博士后科学基金项目(2019M661145)

Mesoscale enhancement mechanism of gas-liquid mass transfer in ultrasonic microreactor

Feishi XU(),Lixia YANG,Guangwen CHEN()   

  1. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
  • Received:2022-01-17 Revised:2022-02-11 Online:2022-06-05 Published:2022-06-30
  • Contact: Guangwen CHEN

摘要:

采用CFD方法对超声微反应器内的Taylor气液两相流的传质过程进行了模拟。针对传质过程中主要的介尺度结构,包括气泡表面波、空化声流、液相内的局部浓度,分析了其空间分布和时间演化规律。模拟结果有效捕捉了实验难以观测的液膜区域,并将液膜厚度与气泡表面波振动进行了关联,阐释了气液界面附近的空化声流对传质过程的强化作用。根据超声微反应器内Taylor流的传质特点,分别研究了不同流动和超声条件对液弹内和液膜处传质过程的影响,比较了各局部传质对整体传质效率的贡献。通过分析整体/局部Sherwood数与Peclet数间的关系,研究了超声效应对气液传质速率的影响。分析结果从介尺度角度验证了文献关于超声微反应器传质系数的计算,完善了超声微反应器内气液传质过程的强化理论。

关键词: 微通道, 微反应器, 超声, 声空化, 气泡, 传质

Abstract:

The mass transfer processes of the gas-liquid two-phase Taylor flow in the ultrasonic microreactor were simulated by CFD method. The spatial distribution and time evolution of the mesoscale structures including surface waves, acoustic streaming and local concentration were analyzed. The simulation results effectively captured the liquid film region and correlated the liquid film thickness with the surface wave vibration. The formation of acoustic streaming near the gas-liquid interface was also discussed. According to the mass transfer characteristics of ultrasonic Taylor flow, the effects of different flow and ultrasonic conditions on the mass transfer process at the liquid slug and film were investigated separately, and the contribution of each local part on the overall mass transfer efficiency was compared. The relationship between the overall and local Sh-Pe was analyzed to discuss the characterization method of the gas-liquid mass transfer rate under ultrasonic conditions. The analysis results verify the calculation of the mass transfer coefficient of the ultrasonic microreactor from the perspective of mesoscale, and improve the theory of strengthening the gas-liquid mass transfer process in the ultrasonic microreactor.

Key words: microchannel, microreactor, ultrasonics, acoustic cavitation, bubble, mass transfer

中图分类号: