化工学报 ›› 2016, Vol. 67 ›› Issue (2): 512-518.doi: 10.11949/j.issn.0438-1157.20150614

• 流体力学与传递现象 • 上一篇    下一篇

竖直多孔管降膜蒸发传热实验

范永坚, 徐宏, 徐鹏   

  1. 华东理工大学机械与动力工程学院, 化学工程联合国家重点实验室, 上海 200237
  • 收稿日期:2015-05-14 修回日期:2015-09-16 出版日期:2016-02-05 发布日期:2016-02-05
  • 通讯作者: 徐宏 E-mail:hxu@ecust.edu.cn

Heat transfer experiment of falling-film evaporation in vertical porous tube

FAN Yongjian, XU Hong, XU Peng   

  1. State Key Laboratory of Chemical Engineering, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2015-05-14 Revised:2015-09-16 Online:2016-02-05 Published:2016-02-05

摘要:

研究了内表面烧结型多孔管对降膜蒸发换热效果的影响。采用单管降膜蒸发器,由壳程的蒸汽加热管程的水降膜传热。在热通量q=13~90 kW·m-2,传热温差ΔT=2.87~9.5℃,液体Reynolds数ReL=4500~15000 范围内,求不同工况下管内降膜传热系数,并将其与相对应的光管换热性能进行比较。比较数据可知:多孔管的管内降膜传热系数是光管的2.03 倍,总传热系数是光管的1.78 倍,多孔管强化传热效果明显。

关键词: 烧结型多孔管, 降膜蒸发, 传热系数, 强化传热

Abstract:

This paper presents the effect of internal sintered porous tube on the falling-film evaporation heat transfer coefficients. The experiment was performed with a single-tube evaporator, using steam in the shell to heat water in the tube. The falling-film evaporation heat transfer coefficients were calculated under various conditions with heat flux from 13 kW·m-2 to 90 kW·m-2, heat transfer temperature difference from 2.87℃ to 9.5℃, and liquid Reynolds number from 4500 to 15000. The experimental results with a smooth tube are compared to those with an internal sintered porous tube. The results show that the falling-film evaporation heat transfer coefficients of an internal sintered porous tube are 2.03 times that of smooth tube, while the overall heat transfer coefficients are 1.78 times. The enhancement effects for heat transfer of internal sintered porous tube are obvious.

Key words: sintered porous tube, falling-film evaporation, heat transfer coefficient, heat transfer enhancement

中图分类号: 

  • TK124
[1] FAGERHOLM N E, GHAZANFARI A R, KIVIOJA K. Boiling heat transfer performance of plain and porous tubes in falling film flow of refrigerant R114[J]. Heat and Mass Transfer, 1987, 21(6):343-353.
[2] 魏峰. 带螺旋线的管内降膜蒸发器传热性能研究[D]. 天津:河北工业大学, 2005. WEI F. Experimental investigation on heat transfer capability of falling-film evaporator in the vertical tube with spring inserts[D]. Tianjin:Hebei University of Technology, 2005.
[3] 赵鸿汉. 波纹竖管内降落液膜的蒸发传热与流体力学性能[D]. 天津:天津科技大学, 2004. ZHAO H H. Characteristics of heat transfer and hydrodynamics of falling film evaporation in a vertical wavy wall tube[D]. Tianjin:Tianjin University of Science and Technology, 2004.
[4] SUN P, LIN Z Q. Heat transfer of falling film in vertical tube with superimposed vapor flow[J]. Chemical Engineering, 1993, 21(5):15-19.
[5] 杨冬, 李永星, 陈听宽, 等. 多孔表面管内高沸点工质的强化流动沸腾换热与阻力特性[J]. 化工学报, 2004, 55(10):1631-1637. YANG D, LI Y X, CHEN T K, et al. Enhanced flow boiling heat transfer of high saturation temperature organic fluid in vertical porous tube[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(10):1631-1637.
[6] GOTO M, INOUE N, ISHIWATARI N. Condensation and evaporation heat transfer of R410A inside internally grooved horizontal tubes[J]. International Journal of Refrigeration, 2001, 24(7):628-638.
[7] SARBU I, VALEA E S. Water pool boiling heat transfer enhancement for modified surface tubes[J]. International Communications in Heat and Mass Transfer, 2014, 50:61-67.
[8] HABERT M, THOME J R. Falling-film evaporation on tube bundle with plain and enhanced tubes (Ⅰ):Experimental results[J]. Experimental Heat Transfer, 2010, 23(4):259-280.
[9] 罗林聪. 水平异形管降膜蒸发流动与传热强化机理及实验研究[D]. 济南:山东大学, 2014. LUO L C. Analysis of flow and heat transfer enhancement and experimental research on falling film evaporation on horizontal shaped tubes[D]. Jinan:Shandong University, 2014.
[10] RAUSCH M H, LEIPERTZ J R A, FRÖBA A P. Dropwise condensation of steam on ion implanted titanium surfaces[J]. International Journal of heat and Mass Transfer, 2010, 53(1/2/3):423-430.
[11] ROQUES J F, THOME J R. Falling films on arrays of horizontal tubes with R-134a (Ⅰ):Boiling heat transfer results for four types of tubes[J]. Heat Transfer Engineering, 2007, 28(5):398-414.
[12] RIBATSKI G, THOME J R. Experimental study on the onset of local dry out in an evaporating falling film on horizontal plain tubes[J]. Heat Transfer Engineering, 2007, 28(5):398-414.
[13] 刘阿龙, 徐宏, 王学生, 等. 换热器烧结型表面多孔管综述[J]. 石油化工设备, 2005, 34(1):47-49. LIU A L, XU H, WANG X S, et al. Summarization of sintered surface porous tubes of heat exchanger[J]. Petro-Chemical Equipment, 2005, 34(1):47-49.
[14] KLINE S J, MCCLINTOCK F A. Describing uncertainties in single-sample experiments[J]. Mechanical Engineering, 1953, 75:3-8.
[15] HERBERT L S, STERNS U J. An experimental investigation of heat transfer to water in film flow (Ⅱ):Boiling runs with and without induced swirl[J]. The Canadian Journal of Chemical Engineering, 1968, 46(6):408-412.
[16] LIU Z H, YI J. Falling film evaporation heat transfer of water/salt mixtures from roll-worked enhanced tubes and tube bundle[J]. Applied Thermal Engineering, 2002, 22(1):83-95.
[17] FUJITA Y, TSUTSUI M. Experimental study of falling-film evaporation on horizontal tubes[J]. Heat Transfer, 1998, 27(8):609-618.
[18] LEE S, KÖROGLU B, PARK C. Experimental investigation of capillary-assisted solution wetting and heat transfer using a micro-scale, porous-layer coating on horizontal-tube, falling-film heat exchanger[J]. International Journal of Refrigeration, 2012, 35:1176-1187.
[19] FAGHRI A, ZHANG Y W, HOWELL J. Advanced Heat and Mass Transfer[M]. Washington D.C.:Taylor & Francis, 1995:726.
[20] 沈吟秋,郭宜祜. 水平管外喷淋式降膜蒸发的研究[J]. 化工学报, 1987, 38(4):467-475. SHEN Y Q, GUO Y H. Investigation on the spray film evaporation on the outside of a single horizontal-tube[J]. Journal of Chemical Industry and Engineering (China), 1987, 38(4):467-475.
[21] 陈砺, 陈仲言. 水平椭圆多孔管外降膜沸腾传热的研究[J]. 化学工程, 1990, 18(3):35-40. CHEN L, CHEN Z Y. Falling film boiling heat transfer on horizontal elliptical tube[J]. Chemical Engineering (China), 1990, 18(3):35-40.
[22] 陈振兴, 蔡祺凤. 烧结型表面多孔管的沸腾传热研究[J].轻金属, 1994, (4):10-14. CHEN Z X, CAI Q F. Boiling heat transfer study of sintered porous tube[J]. Light Metals, 1996, (4):10-14.
[23] 戴玉林. 金属表面多孔层制备技术与沸腾强化性能研究[D]. 上海:华东理工大学, 2010. DAI Y L. Study on manufacturing technology and boiling enhancing characteristics of porous metallic layer[D]. Shanghai:East China University of Science and Technology, 2010.
[24] 韩坤, 刘阿龙, 彭东辉, 等. 内表面烧结型多孔管的流动沸腾换热[J]. 热能动力工程, 2011, 26(1):48-52. HAN K, LIU A L, PENG D H, et al. Boiling heat transfer study of internal sintered porous tubes[J]. Journal of Engineering for Thermal Energy and Power, 2011, 26(1):48-52.
[1] 林伟翔, 苏港川, 陈强, 文键, 王斯民. 基于超声技术的沉浸式换热器强化传热研究[J]. 化工学报, 2021, 72(8): 4055-4063.
[2] 高峰, 陈永昌, 赵金龙, 马重芳. 磁场对熔盐射流冲击传热的影响[J]. 化工学报, 2020, 71(S2): 92-97.
[3] 郎中敏, 吴刚强, 赫文秀, 韩晓星, 苟延梦, 李双莹. 二氧化铈/水基纳米流体核沸腾传热特性[J]. 化工学报, 2020, 71(5): 2061-2068.
[4] 刘占斌, 何雅玲, 王坤, 马朝, 姜涛. 泡沫填充方式对管内超临界CO2流动换热的影响研究[J]. 化工学报, 2019, 70(9): 3329-3336.
[5] 高兴辉, 周帼彦, 涂善东. 缠绕管式换热器壳程强化传热性能影响因素分析[J]. 化工学报, 2019, 70(7): 2456-2471.
[6] 柴叶霞, 陈华艳, 贾悦, 李丹丹, 武春瑞, 吕晓龙. PVDF中空纤维换热管超疏水表面强化蒸气滴状冷凝传热[J]. 化工学报, 2019, 70(4): 1331-1339.
[7] 刘忠彦, 孙大汉, 金旭, 王天皓, 马一太. CO2管内流动沸腾换热模型评价研究[J]. 化工学报, 2019, 70(1): 56-64.
[8] 陈景祥, 李蔚, 朱华, 金春花, 杜锦才, 张政江, 刘丽. 三维双侧强化管内R410A蒸发换热特性[J]. 化工学报, 2018, 69(S2): 76-81.
[9] 闫鸿志, 胡斌, 王如竹. 水-水降膜蒸发器的模拟仿真和优化[J]. 化工学报, 2018, 69(S2): 68-75.
[10] 李晗, 蒲文灏, 杨宁, 毛衍钦, 岳晨, 张琦. 空气-石蜡直接接触换热特性实验研究[J]. 化工学报, 2018, 69(9): 3792-3798.
[11] 黄金, 李晓朋, 王婷, 胡艳鑫, 盛鑫鑫. 基于MWCNTs/PA复合材料铜表面处理的传热性能[J]. 化工学报, 2018, 69(7): 2956-2963.
[12] 姜林林, 柳建华, 张良, 赵越. 水平微细管内CO2流动沸腾换热特性[J]. 化工学报, 2018, 69(4): 1428-1436.
[13] 袁金斗, 王彦博, 胡涵, 余雄江, 徐进良. 微小通道内不同润湿性表面流动冷凝传热[J]. 化工学报, 2018, 69(10): 4156-4166.
[14] 蒋淳, 陈振乾. 水平管外降膜蒸发流动和传热特性数值模拟[J]. 化工学报, 2018, 69(10): 4224-4230.
[15] 张弘喆, 贾先剑, 郭航, 郭青, 闫小克, 叶芳, 马重芳. 冷却水参数对钠钾合金热管传热性能影响[J]. 化工学报, 2017, 68(S1): 105-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈晶瑜, 张磊, 陈金春, 陈国强. Ralstonia eutropha PHB4重组菌合成PHA共聚物及性质测定[J]. CIESC Journal, 2007, 15(3): 391 -396 .
[2] 李勇飞, 严旭辉, 江国防, 刘强, 宋建新, 郭灿城. 金属卟啉催化的甲苯氧化及工艺优化[J]. CIESC Journal, 2007, 15(3): 453 -457 .
[3] 邱宪波, 袁景淇, 汪志锋. 用于基因扩增热循环温度跟踪的前馈变结构PID控制技术[J]. CIESC Journal, 2006, 14(2): 200 -206 .
[4] 杨庆峰. 反渗透系统中Zn2+对CaCO3结垢的阻滞[J]. CIESC Journal, 2006, 14(2): 178 -183 .
[5] 张强, 李少远. 基于统计分析的多变量预测控制性能检测与诊断
[J]. CIESC Journal, 2006, 14(2): 207 -215 .
[6] 刘志祥, 毛宗强, 徐景明, Natascha Hess-Mohr, Volkmar M.Schmidt. 用于PEMFC的丙烷自热重整制氢操作条件优化研究
[J]. CIESC Journal, 2006, 14(2): 259 -265 .
[7] 武占省, 李春, 孙喜房, 徐小琳, 代斌, 李金娥, 赵宏生. 新疆夏子街膨润土的特性及其酸活化产品脱色性能的研究[J]. CIESC Journal, 2006, 14(2): 253 -258 .
[8] AhmetSari,KamilKaygusuz. 应用于低温加热的肉豆蔻酸和硬脂酸共熔混合物的储热特性[J]. CIESC Journal, 2006, 14(2): 270 -275 .
[9] 纪红兵, 李俊丽, 裴丽霞, 高建荣. Low Breakage and Size-controlled Preparation of NiCl2 Immobilized Hollow Polyurea Microcapsules[J]. CIESC Journal, 2008, 16(1): 119 -123 .
[10] 邓志毅, 韦朝海, 周秀峰. Start-up and Performance of a Novel Reactor——Jet Biogas In-ter-loop Anaerobic Fluidized Bed[J]. CIESC Journal, 2008, 16(1): 143 -150 .