化工学报 ›› 2016, Vol. 67 ›› Issue (2): 494-503.doi: 10.11949/j.issn.0438-1157.20151253

• 流体力学与传递现象 • 上一篇    下一篇

气固搅拌流化床中压力脉动特性

张永俊, 王嘉骏, 顾雪萍, 冯连芳   

  1. 浙江大学化学工程与生物工程学院, 化学工程联合国家重点实验室, 浙江 杭州 310027
  • 收稿日期:2015-08-03 修回日期:2015-11-01 出版日期:2016-02-05 发布日期:2016-02-05
  • 通讯作者: 王嘉骏 E-mail:jiajunwang@zju.edu.cn
  • 基金资助:

    国家自然科学基金项目(21276222);化学工程联合国家重点实验室开放课题资助项目(SKL-ChE-13D01);国家高技术研究发展计划项目(2012AA040305)。

Pressure fluctuation in gas-solid agitated fluidized bed

ZHANG Yongjun, WANG Jiajun, GU Xueping, FENG Lianfang   

  1. State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • Received:2015-08-03 Revised:2015-11-01 Online:2016-02-05 Published:2016-02-05
  • Supported by:

    supported by the National Natural Science Foundation of China (21276222), the State Key Laboratory of Chemical Engineering (SKL-ChE-13D01) and the National High Technology Research and Development Program of China (2012AA040305).

摘要:

气固搅拌流化床反应器可用于黏结性聚合物颗粒的流态化过程,流化床中通气湍动与搅拌的相互作用关系仍不明确。通过压力脉动的统计分析、功率谱分析和小波分析,考察了搅拌桨型式和搅拌转速对流态化特性的影响规律。实验发现,搅拌转速和搅拌桨型式对床层压力影响较小,但对压力脉动影响显著。搅拌流化床中搅拌与通气湍动对流态化共同作用,双层锚式桨、框式桨等小桨叶面积的搅拌桨在较高转速条件下能强化流态化过程,与普通流化床相比具有更小的气泡尺寸和压力脉动,搅拌可抑制气泡聚并、破碎气泡,维持床层均匀流态化;而新型具有大桨叶面积的自清洁桨的搅拌作用强烈,在较高的转速下易形成桨叶前方的颗粒堆积和桨叶后方的气体短路等非正常流化现象,适宜于中等转速的操作条件。

关键词: 流化床, 搅拌, 压力脉动, 统计分析, 多相流, 聚结

Abstract:

Gas-solid agitated fluidized beds can be used to improve the fluidization performance of sticky polymer particles. Experimental pressure fluctuation signals were analyzed with statistics analysis, power spectrum analysis and wavelet analysis for investigating the influence of agitation speeds and types of agitators on the fluidization characteristic. Due to the effects of suppression and breakage on bubbles caused by agitation, lower pressure fluctuation amplitude and smaller bubbles were found in the agitated fluidized bed compared to general fluidized bed. The synergy between gas flow and agitation occurred in the agitated fluidized bed. For a gas-solid fluidized bed with an anchor impeller or a frame impeller, sufficiently high agitation speed was needed to improve fluidization performance. However, for self-cleaning agitator, higher agitation speed engendered adverse phenomena of gas short circuit and particles accumulation near the blades. Therefore, the feasible agitation speed was recommended for extending the application of the new self-cleaning agitator in industry.

Key words: fluidized bed, agitation, pressure fluctuation, statistics analysis, multiphase flow, coalescence

中图分类号: 

  • TQ021
[1] JENKINS J M, JONES R L, JONES T M, et al. Method for fluidized bed polymerization:US4588790[P]. 1986-05-03.
[2] WANG Z L, KWAUK M, LI H Z. Fluidization of fine particles[J]. Chem. Eng. Sci., 1998, 53(3):377-395.
[3] REED T M, FENSKE M R. Effects of agitation on gas fluidization of solids[J]. Ind. Eng. Chem. Res., 1955, 47(2):275-282.
[4] ZACCA J J, DEBLING J A, RAY W H. Reactor residence time distribution effects on the multistage polymerization of olefins(Ⅰ):Basic principles and illustrative examples, polypropylene[J]. Chem. Eng. Sci., 1996, 51(21):4859-4886.
[5] REINA J, VELO E, PUIGJANER L. Fluidization of waste-wood particles with mechanical agitation of the bed[J]. Ind. Eng. Chem. Res., 2001, 40(1):393-397.
[6] KIM J, HAN G Y. Effect of agitation on fluidization characteristics of fine particles in a fluidized bed[J]. Powder Technol., 2006, 166(3):113-122.
[7] GODARD K, RICHARDSON J F. The use of slow speed stirring to initiate particulate fluidisation[J]. Chem. Eng. Sci., 1969, 24(1):194-195.
[8] NELSON B, BRIENS C, BERGOUGNOU M. Pressure fluctuations at individual grid holes of a gas-solid fluidized bed[J]. Powder Technol., 1993, 77(1):95-102.
[9] 张毅, 魏耀东, 时铭显. 气固循环流化床负压差下料立管的压力脉动特性[J]. 化工学报, 2007, 58(6):1417-1420. DOI:10.3321/j.issn:0438-1157.2007.06.013. ZHANG Y, WEI Y D, SHI M X. Characteristics of pressure fluctuation in standpipe at negative pressure gradient in circulating fluidized bed[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(6):1417-1420. DOI:10.3321/j.issn:0438-1157. 2007.06.013.
[10] 李晓祥, 石炎福, 黄卫星, 等. 快速流化床提升管中气固流动行为的非线性分析[J]. 化工学报, 2004, 52(2):182-188. DOI:10.3321/j.issn:0438-1157.2004.02.008. LI X X, SHI Y F, HUANG W X, et al. Nonlinear analysis of gas-solid flow behavior in fast fluidized bed riser[J]. Journal of Chemical Industry and Engineering(China), 2004, 52(2):182-188. DOI:10.3321/j.issn:0438-1157.2004.02.008.
[11] 李凡, 冯连芳, 顾雪萍, 等. 气固搅拌流化床的床层压降[J]. 高校化学工程学报, 2002, 16(4):384-388. DOI:10.3321/j.issn:1003-9015. 2002.04.006. LI F, FENG L F, GU X P, et al. Pressure drop in the gas-solid stirred fluidized bed[J]. Journal of Chemical Engineering of Chinese Universities, 2002, 16(4):384-388. DOI:10.3321/j.issn:1003-9015.2002.04.006.
[12] 王嘉骏, 张文峰, 冯连芳, 等. 气固搅拌流化床压力脉动的小波分析[J]. 化工学报, 2006, 57(12):2854-2859. DOI:10.3321/j.issn:0438-1157.2006.12.012. WANG J J, ZHANG W F, FENG L F, et al. Wavelets analysis of pressure fluctuation in agitated fluidized bed[J]. Journal of Chemical Industry and Engineering(China), 2006, 57(12):2854-2859. DOI:10.3321/j.issn:0438-1157.2006.12.012.
[13] 冯连芳, 张文峰, 王嘉骏, 等. 气固搅拌流化床内的压力脉动特性[J]. 浙江大学学报(工学版), 2007, 41(3):524-528. DOI:10.3785/j.issn. 1008-973X.2007.03.032. FENG L F, ZHANG W F, WANG J J, et al. Pressure fluctuation in gas-solid agitated fluidized bed[J]. Journal of Zhejiang University(Engineering Science), 2007, 41(3):524-528. DOI:10.3785/j.issn. 1008-973X.2007.03.032.
[14] SHI D P, LUO Z H, GUO A Y. Numerical simulation of the gas-solid flow in fluidized-bed polymerization reactors[J]. Ind. Eng. Chem. Res., 2010, 49(9):4070-4079.
[15] 顾雪萍, 韩颖, 王嘉骏, 等. 气固搅拌流化床内压力脉动特性的数值模拟[J]. 化工学报, 2013, 64(2):498-503. DOI:10.3969/j.issn. 0438-1157.2013.02.013. GU X P, HAN Y, WANG J J, et al. Numerical simulation on pressure fluctuation in an agitated fluidized bed[J]. CIESC Journal, 2013, 64(2):498-503. DOI:10.3969/j.issn.0438-1157.2013.02.013.
[16] WANG J J, HAN Y, GU X P, et al. Effect of agitation on the fluidization behavior of a gas-solid fluidized bed with a frame impeller[J]. AIChE J., 2013, 59(4):1066-1074.
[17] WILKINSON D. Determination of minimum fluidization velocity by pressure fluctuation measurement[J]. Can. J. Chem. Eng., 1995, 73(4):562-565.
[18] ZHAO G B, YANG Y Y. Multiscale resolution of fluidized-bed pressure fluctuations[J]. AIChE J., 2003, 49(4):869-882.
[19] LETTIERI P, DI FELICE R, PACCIANI R, et al. CFD modelling of liquid fluidized beds in slugging mode[J]. Powder Technol., 2006, 167(2):94-103.
[20] FAN L T, HO T C, Hiraoka S, et al. Pressure fluctuations in a fluidized bed[J]. AIChE J., 1981, 27(3):388-396.
[21] LIU M X, ZHANG Y M, BI H T, et al. Non-intrusive determination of bubble size in a gas-solid fluidized bed:an evaluation[J]. Chem. Eng. Sci., 2010, 65(11):3485-3493.
[1] 宋粉红, 王伟, 陈奇成, 范晶. 电场作用下双液滴聚合特性[J]. 化工学报, 2021, 72(S1): 371-381.
[2] 许峻, 王智峰, 侯凯军, 高永福, 范怡平, 卢春喜. 双层喷嘴进料提升管内气固流动混合特性的大型冷模实验研究[J]. 化工学报, 2021, 72(8): 4019-4029.
[3] 王景效, 贺翔宇, 龚剑洪, 许建良, 刘海峰. 新型催化裂解快速流化床内颗粒浓度分布实验研究[J]. 化工学报, 2021, 72(8): 4104-4110.
[4] 任辉, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 润湿性图案表面上的液滴侧向弹跳行为[J]. 化工学报, 2021, 72(8): 4255-4266.
[5] 张玉明, 纪德馨, 朱翰文, 万利锋, 张炜, 温宏炎, 岳君容. 微型流化床中萘裂解生成小分子气体的反应动力学研究[J]. 化工学报, 2021, 72(5): 2604-2615.
[6] 金默, 刘道银, 陈晓平. 基于离散元方法的高碱煤灰沉积过程数值模拟研究[J]. 化工学报, 2021, 72(4): 1939-1946.
[7] 杨锋苓, 曹明见, 张翠勋, 刘欣. 柔性Rushton搅拌桨的振动特性[J]. 化工学报, 2021, 72(4): 1975-1986.
[8] 朱明军, 胡大鹏. 三相卧螺离心机设计分析及结构参数对分离效果的影响[J]. 化工学报, 2021, 72(4): 2113-2122.
[9] 袁旭东,贾磊,周到,赵盼盼,吴俊峰,王汝金. 微通道临界热通量的基础理论与提升技术研究进展[J]. 化工学报, 2021, 72(4): 1796-1814.
[10] 李文金, 周勇军, 袁名岳, 何华, 孙建平. 几种框式桨搅拌槽内流动特性的比较研究[J]. 化工学报, 2021, 72(4): 1998-2005.
[11] 胡丹丹, 耿素龙, 曾玺, 王芳, 岳君容, 许光文. 返混对气-固反应特性测试和活化能表征的影响[J]. 化工学报, 2021, 72(3): 1354-1363.
[12] 刘浪宇, 朱春英, 马友光, 付涛涛. 微通道内表面活性剂与界面传递现象研究进展[J]. 化工学报, 2021, 72(2): 783-798.
[13] 陈光, 闫孝红. 一种模拟气液相变过程的相变模型[J]. 化工学报, 2020, 71(S2): 62-69.
[14] 张兵, 魏利平, 滕海鹏. 隔板式内循环流化床压力脉动信号递归分析[J]. 化工学报, 2020, 71(S1): 106-113.
[15] 黎义斌, 宋亚娟, 歹晓晖, 李正贵. 不同推进式桨叶对搅拌反应器内气液两相混合特性的影响[J]. 化工学报, 2020, 71(S1): 227-235.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈晶瑜, 张磊, 陈金春, 陈国强. Ralstonia eutropha PHB4重组菌合成PHA共聚物及性质测定[J]. CIESC Journal, 2007, 15(3): 391 -396 .
[2] 李勇飞, 严旭辉, 江国防, 刘强, 宋建新, 郭灿城. 金属卟啉催化的甲苯氧化及工艺优化[J]. CIESC Journal, 2007, 15(3): 453 -457 .
[3] 邱宪波, 袁景淇, 汪志锋. 用于基因扩增热循环温度跟踪的前馈变结构PID控制技术[J]. CIESC Journal, 2006, 14(2): 200 -206 .
[4] 杨庆峰. 反渗透系统中Zn2+对CaCO3结垢的阻滞[J]. CIESC Journal, 2006, 14(2): 178 -183 .
[5] 张强, 李少远. 基于统计分析的多变量预测控制性能检测与诊断
[J]. CIESC Journal, 2006, 14(2): 207 -215 .
[6] 刘志祥, 毛宗强, 徐景明, Natascha Hess-Mohr, Volkmar M.Schmidt. 用于PEMFC的丙烷自热重整制氢操作条件优化研究
[J]. CIESC Journal, 2006, 14(2): 259 -265 .
[7] 武占省, 李春, 孙喜房, 徐小琳, 代斌, 李金娥, 赵宏生. 新疆夏子街膨润土的特性及其酸活化产品脱色性能的研究[J]. CIESC Journal, 2006, 14(2): 253 -258 .
[8] AhmetSari,KamilKaygusuz. 应用于低温加热的肉豆蔻酸和硬脂酸共熔混合物的储热特性[J]. CIESC Journal, 2006, 14(2): 270 -275 .
[9] 纪红兵, 李俊丽, 裴丽霞, 高建荣. Low Breakage and Size-controlled Preparation of NiCl2 Immobilized Hollow Polyurea Microcapsules[J]. CIESC Journal, 2008, 16(1): 119 -123 .
[10] 邓志毅, 韦朝海, 周秀峰. Start-up and Performance of a Novel Reactor——Jet Biogas In-ter-loop Anaerobic Fluidized Bed[J]. CIESC Journal, 2008, 16(1): 143 -150 .