化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 413-420.doi: 10.11949/0438-1157.20200441

• 分离工程 • 上一篇    下一篇

Aspen Plus模拟高浓度H2S/CO2酸性气的选择性分离

高帅涛1(),刘雪珂1,张丽1,刘芬1,余江1(),商剑锋2,欧天雄2,周政3,陈平文3   

  1. 1.北京化工大学化学工程学院,能源环境催化北京市重点试验室环境催化与分离过程研究组,北京 100029
    2.中国石油化工有限公司普光分公司天然气技术管理部,四川 达州 635000
    3.中国石油化工有限公司中原油田分公司天然气处理厂,河南 濮阳 457000
  • 收稿日期:2020-04-29 修回日期:2020-10-06 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 余江 E-mail:2017310010@buct.edu.cn;yujiang@mail.buct.edu.cn
  • 作者简介:高帅涛(1994—),男,硕士研究生,2017310010@buct.edu.cn
  • 基金资助:
    国家科技部“十三五”重大专项项目(2016ZX05017-004)

Aspen Plus simulation on selective separation of high concentration acid gas of H2S and CO2

GAO Shuaitao1(),LIU Xueke1,ZHANG Li1,LIU Fen1,YU Jiang1(),SHANG Jianfeng2,OU Tianxiong2,ZHOU Zheng3,CHEN Pingwen3   

  1. 1.Research Group of Environmental Catalysis & Separation Process, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
    2.Natural Gas Technology Management Department of Puguang Branch of Sinopec, Dazhou 635000, Sichuan, China
    3.Natural Gas Treatment Plant of Zhongyuan Oilfield Branch of Sinopec, Puyang 457000, Henan, China
  • Received:2020-04-29 Revised:2020-10-06 Published:2021-06-20 Online:2021-06-20
  • Contact: YU Jiang E-mail:2017310010@buct.edu.cn;yujiang@mail.buct.edu.cn

摘要:

以煤制氢尾气中的高浓度酸性气体H2S和CO2为对象,以聚乙二醇二甲醚(NHD)为吸收剂,使用PC-SAFT状态方程拟合了酸性气体CO2和H2S在聚乙二醇二甲醚(NHD)溶剂中溶解参数,运用Aspen Plus流程模拟软件,构建两级吸收分离工艺,实现H2S和CO2的高效分离,H2S浓度由30%提升至98.7%,CO2含量由55%提升至99.4%。由此,可以通过高效分离酸性气H2S和CO2,并以提浓后再资源化利用的方式实现酸性气的污染控制。

关键词: 二氧化碳, 硫化氢, 吸收分离, Aspen模拟, 聚乙二醇二甲醚

Abstract:

In this paper, polyethylene glycol dimethyl ether (NHD) was used as absorbent to treat the tail gas with high concentration of H2S and CO2 from the coal to hydrogen process. The solubility parameters of H2S and CO2 in NHD were fitted with the PC-SAFT equation of state. A two-stage absorptive separation process was built with the application of Aspen Plus process simulation software to realize the high effective separation of H2S and CO2. The results show that the concentration of the separated H2S and CO2 could be reached from 30% to 98.7% and 55% to 99.4%, respectively. Hence, the acid gas pollution control can be done by high efficient separation of H2S and CO2 to get high single concentration for reuse and resource.

Key words: carbon dioxide, hydrogen sulfide, absorption separation, Aspen simulation, polyethylene glycol dimethyl ether

中图分类号: 

  • TQ 028.1

表1

某工厂煤制氢尾气组分"

组分摩尔分数/%
CO254.97
N212.93
H2S31.38
其他0.72

图1

流程模拟"

图2

溶解度模拟流程"

图3

拟合得到的在不同压力下的溶解度曲线"

图4

一级闪蒸条件与二级闪蒸尾气H2S摩尔分数的关系"

图5

吸收剂条件与H2S摩尔分数的关系"

图6

吸收塔条件与H2S摩尔分数的关系"

图7

二级闪蒸温度与H2S摩尔分数的关系"

图8

吸收剂条件与相应组分摩尔分数关系"

图9

CO2吸收塔条件与相应组分摩尔分数关系"

图10

分流器流量与二级闪蒸尾气H2S摩尔分数关系"

图11

CO2闪蒸温度与贫液中CO2的摩尔分数关系"

表2

模拟优化结果"

项目原料气H2S吸收塔进气H2S吸收塔尾气吸收塔尾气CO2尾气H2S尾气CO2贫液H2S贫液
T/℃382019.5116.2252548.567.7
p/MPa0.210.40.40.0010.0010.0010.001
摩尔流量/(kmol/h)46.7810147.16.91125.6214.10230130.109
分摩尔流量/(kmol/h)
NHD<0.001tracetrace0.0020.001230129.999
CO225.7330400.00125.510.180.04<0.001
N27.0177.047.086.910.107<0.001tracetrace
H2S14.0364.30trace0.00213.922<0.0010.11
摩尔分数
NHD402×10-9118×10-970×10-984×10-684×10-610.999
CO20.550.30.85149×10-60.9960.013181×10-62×10-6
N20.150.070.1510.004954×10-912×10-9trace
H2S0.30.6358×10-6trace67×10-60.98786×10-9846×10-6
1 Mirfendereski S M, Niazi Z, Mohammadi T. Selective removal of H2S from gas streams with high CO2 concentration using hollow-fiber membrane contractors [J]. Chemical Engineering & Technology, 2019, 42(1): 196-208.
2 Afsharpour A, Haghtalab A. Simultaneous measurement absorption of CO2 and H2S mixture into aqueous solutions containing Diisopropanolamine blended with 1-butyl-3-methylimidazolium acetate ionic liquid [J]. International Journal of Greenhouse Gas Control, 2017, 58: 71-80.
3 吴振中, 李发永, 曹作刚. 含高浓度H2S炼厂酸性气体处理新工艺[J]. 石油化工高等学校学报, 2005, 18(4): 12-15.
Wu Z Z, Li F Y, Cao Z G. New process for treating high concentrated H2S refinery acidic gas [J]. Journal of Petrochemical Universities, 2005, 18(4): 12-15.
4 Li Y, Huang W J, Zheng D X, et al. Solubilities of CO2 capture absorbents 2-ethoxyethyl ether, 2-butoxyethyl acetate and 2-(2-ethoxyethoxy)ethyl acetate [J]. Fluid Phase Equilibria, 2014, 370: 1-7.
5 Madeddu C, Errico M, Baratti R. Solvent recovery system for a CO2-MEA reactive absorption-stripping plant [J]. Chemical Engineering Transactions, 2019, 74: 805-810.
6 Shiflett M B, Niehaus A M S, Yokozeki A. Separation of CO2 and H2S using room-temperature ionic liquid [bmim][MeSO4] [J]. Journal of Chemical & Engineering Data, 2010, 55(11): 4785-4793.
7 孟艳芳. 常见煤制气中的酸性气体脱除工艺技术特性对比与选择[J]. 山西能源学院学报, 2017, 30(3): 89-90, 94.
Meng Y F. Comparison and selection of technical characteristics of acid gas removal in common coal gasification [J]. Journal of Shanxi Institute of Energy, 2017, 30(3): 89-90, 94.
8 陈昌介, 何金龙, 温崇荣. 高含硫天然气净化技术现状及研究方向[J]. 天然气工业, 2013, 33(1): 112-115.
Chen C J, He J L, Wen C R. A state of the art of high-sulfur natural gas sweetening technology and its research direction [J]. Natural Gas Industry, 2013, 33(1): 112-115.
9 Ma C Y, Liu C, Lu X H, et al. Techno-economic analysis and performance comparison of aqueous deep eutectic solvent and other physical absorbents for biogas upgrading [J]. Applied Energy, 2018, 225: 437-447.
10 Yang S, Qian Y, Yang S Y. Development of a full CO2 capture process based on the rectisol wash technology [J]. Industrial & Engineering Chemistry Research, 2016, 55(21): 6186-6193.
11 赵鹏飞, 李水弟, 王立志. 低温甲醇洗技术及其在煤化工中的应用[J]. 化工进展, 2012, 31(11): 2442-2448.
Zhao P F, Li S D, Wang L Z. Rectisol technology and its application in coal chemical industry [J]. Chemical Industry and Engineering Progress, 2012, 31(11): 2442-2448.
12 李正西. NHD脱硫脱碳技术应用 [J]. 煤化工, 2004, 32(3): 53-57.
Li Z X. Application of the NHD technology for desulfurization and decarbonization [J]. Coal Chemical Industry, 2004, 32(3): 53-57.
13 林民鸿. NHD气体净化技术理论与实践(上) [J]. 化肥工业, 2000, 27(4): 17-21.
Lin M H. NHD gas purification technology: theory and practice (Ⅰ) [J]. Journal of the Chemical Fertilizer Industry, 2000, 27(4): 17-21.
14 Im D, Roh K, Kim J, et al. Economic assessment and optimization of the Selexol process with novel additives [J]. International Journal of Greenhouse Gas Control, 2015, 42: 109-116.
15 Ramzan N, Shakeel U, Güngör A, et al. Techno-economic analysis of selexol and sulfinol processes for pre-combustion CO2 capture [C]// 2018 International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET). Islamabad, Pakistan, 2018: 1-6.
16 邱朋华, 李丹丹, 徐宝龙, 等. 基于Aspen Plus对Selexol分离CO2流程的分析[J]. 中国电机工程学报, 2014, 34(8): 1231-1237.
Qiu P H, Li D D, Xu B L, et al. Analysis of CO2 separation by Selexol based on Aspen Plus [J]. Proceedings of the CSEE, 2014, 34(8): 1231-1237.
17 朱林, 艾珍, 王大军, 等. 使用N-甲酰吗啉和聚乙二醇二甲醚溶剂分离H2S和CO2流程模拟比较[J]. 化工学报, 2017, 68: 218-224.
Zhu L, Ai Z, Wang D J, et al. Simulation and comparison of H2S and CO2 separation processes using N-formyl morpholine and polyethylene glycol dimethyl ether solvent [J]. CIESC Journal, 2017, 68: 218-224.
18 Mohammed I Y, Samah M, Sabina G, et al. Comparison of SelexolTM and Rectisol® technologies in an integrated gasification combined cycle (IGCC) plant for clean energy production [J]. International Journal of Engineering Research, 2014, 3(12): 742-744.
19 Kapetaki Z, Brandani P, Brandani S, et al. Process simulation of a dual-stage Selexol process for 95% carbon capture efficiency at an integrated gasification combined cycle power plant [J]. International Journal of Greenhouse Gas Control, 2015, 39: 17-26.
20 Bagchi B, Sati S, Shilapuram V. Modelling solubility of CO2 and hydrocarbon gas mixture in ionic liquid ([emim][FAP]) using ASPEN Plus [J]. Journal of Molecular Liquids, 2016, 224: 30-42.
21 Wang Y L, Liu X B, Kraslawski A, et al. A novel process design for CO2 capture and H2S removal from the syngas using ionic liquid [J]. Journal of Cleaner Production, 2019, 213: 480-490.
22 霍月洋. 利用Aspen Plus计算气体物质的溶解度[J]. 浙江化工, 2015, 46(4): 48-50.
Huo Y Y. Simulation and calculation for the solubility of gas by Aspen Plus [J]. Zhejiang Chemical Industry, 2015, 46(4): 48-50.
23 Xu Y M, Schutte R P, Hepler L G. Solubilities of carbon dioxide, hydrogen sulfide and sulfur dioxide in physical solvents [J]. The Canadian Journal of Chemical Engineering, 1992, 70(3): 569-573.
24 Ros J A, Brilman D W F, Bernhardsen I M, et al. Describing CO2-Absorbent Properties in AspenPlus® [M]// Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2019: 1087-1092.
[1] 李敏霞, 詹浩淼, 王派, 刘雪涛, 李昱翰, 马一太. 一种带引射器和经济器的CO2跨临界制冷系统[J]. 化工学报, 2021, 72(S1): 146-152.
[2] 吴俊晔, 葛天舒, 吴宣楠, 代彦军, 王如竹. 基于吸附剂/木浆纤维纸耦合材料的空气净化[J]. 化工学报, 2021, 72(S1): 520-529.
[3] 颜建国, 郑书闽, 郭鹏程, 张博, 毛振凯. 基于GA-BP神经网络的超临界CO2传热特性预测研究[J]. 化工学报, 2021, 72(9): 4649-4657.
[4] 严如奇, 丁雪兴, 徐洁, 洪先志, 包鑫. 基于湍流模型的S-CO2干气密封流场与稳态性能分析[J]. 化工学报, 2021, 72(8): 4292-4303.
[5] 平甜甜, 尹鑫, 董玉, 申淑锋. 有机胺非水溶液吸收CO2的动力学研究进展[J]. 化工学报, 2021, 72(8): 3968-3983.
[6] 谢乐, 蒋崇文. 生物滴滤塔去除高浓度H2S废气的模拟研究[J]. 化工学报, 2021, 72(8): 4346-4353.
[7] 洪燕珍, 王笛, 李卓昱, 徐亚南, 王宏涛, 苏玉忠, 彭丽, 李军. 超临界二氧化碳介入的α-松油醇催化合成1,8-桉叶素[J]. 化工学报, 2021, 72(7): 3680-3685.
[8] 高子熹, 郭树奇, 费强. 生物转化温室气体生产单细胞蛋白的研究进展[J]. 化工学报, 2021, 72(6): 3202-3214.
[9] 侯玉洁, 梁琳, 江子旭, 闫兴清, 于小哲, 吕先舒, 喻健良. 惰性气体对粉尘爆炸泄放特性影响的实验研究[J]. 化工学报, 2021, 72(5): 2887-2895.
[10] 董子超, 吴玉, 张博风, 刘斯宝, 刘国柱, 赵杰. 新型FeCo双金属催化剂催化CO2加氢制低碳烯烃[J]. 化工学报, 2021, 72(5): 2647-2656.
[11] 江锦波, 滕黎明, 孟祥铠, 李纪云, 彭旭东. 基于多变量摄动的超临界CO2干气密封动态特性[J]. 化工学报, 2021, 72(4): 2190-2202.
[12] 于丰收, 张鲁华. Cu基纳米材料电催化还原CO2的结构-性能关系[J]. 化工学报, 2021, 72(4): 1815-1824.
[13] 于雪菲, 张帅, 刘琳琳, 都健. 电厂和碳捕集装置同步集成与调度优化研究[J]. 化工学报, 2021, 72(3): 1447-1456.
[14] 倪佳, 孙雪艳, 税子怡, 贺飞鸿, 惠小敏, 朱亮亮, 陈曦. 湿法再生CO2空气捕集材料的能耗与性能优化[J]. 化工学报, 2021, 72(3): 1409-1418.
[15] 谭方园, 李康康, 于海, 蒋凯琦, 韩月衡, 王晓龙, 翟融融, 李玉龙, 陈健. 金属离子促进乙醇胺捕集二氧化碳研究[J]. 化工学报, 2021, 72(2): 1026-1035.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐欧官, 苏宏业, 计建炳, 金晓明, 褚健. 甲苯歧化与C9芳烃烷基转移反应动力学模型和模拟分析[J]. CIESC Journal, 2007, 15(3): 326 -332 .
[2] 司徒粤, 胡剑峰, 黄洪, 傅和青, 曾汉维, 陈焕钦. 新型环氧大豆油增韧酚醛树脂的合成与性质[J]. CIESC Journal, 2007, 15(3): 418 -423 .
[3] 王紫色, 许淳淳, 曹霞, 徐奔. 仿古铸铁腐蚀产物的形貌、结构的演化历程及其危害性研究[J]. CIESC Journal, 2007, 15(3): 433 -438 .
[4] 刘文红, 郭烈锦, 吴铁军, 张西民. 水平长直管内油水两相流流动特性实验研究[J]. CIESC Journal, 2003, 11(5): 491 -496 .
[5] 李英, 都健, 姚平经. 多杂质水网络设计和零排放[J]. CIESC Journal, 2003, 11(5): 559 -564 .
[6] 徐冬梅, 胡仰栋, 华贲, 王修林. 含再生再利用的用水系统的最小新鲜水和相应的再生水用量的确定[J]. CIESC Journal, 2003, 11(3): 257 -263 .
[7] 刘润静, 陈建峰, 郭奋, 吉米, 沈志刚. 纳米碳酸钙在非等温条件下热分解动力学及机理研究[J]. CIESC Journal, 2003, 11(3): 302 -306 .
[8] 霍超, 孟灋, 任晓红, 阳永荣, 戎顺熙. 烯烃聚合过程的分形演化及其生长模型[J]. CIESC Journal, 2003, 11(1): 33 -37 .
[9] 李小年, 刘化章, 岑亚青, 胡樟能. 维氏体铁基氨合成催化剂动力学分析[J]. CIESC Journal, 2003, 11(1): 19 -26 .
[10] 石冰洁, 张卫东, 张泽廷, 于恩平. 超临界流体萃取塔的流体力学和传质性能[J]. CIESC Journal, 2002, 10(6): 696 -700 .