化工学报

• •    

再压缩S-CO2布雷顿循环性能分析及多目标优化

李子扬(), 郑楠(), 方嘉宾, 魏进家   

  1. 西安交通大学化学工程与技术学院,陕西 西安 710049
  • 收稿日期:2024-01-16 修回日期:2024-04-07 出版日期:2024-04-08
  • 通讯作者: 郑楠
  • 作者简介:李子扬(2002—),男,硕士研究生,ziyangli@stu.xjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(52006163)

Performance analysis and multi-objective optimization of recompression S-CO2 Brayton cycle

Ziyang LI(), Nan ZHENG(), Jiabin FANG, Jinjia WEI   

  1. School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • Received:2024-01-16 Revised:2024-04-07 Online:2024-04-08
  • Contact: Nan ZHENG

摘要:

结合储热的太阳能热发电技术输出稳定、调峰能力强,引入超临界二氧化碳(S-CO2)布雷顿循环可进一步提升热电转换效率。既有研究大多采用单一指标对S-CO2循环进行性能评估,结果相对片面,因而有必要开展多指标综合性能评价以客观反映循环性能状况。建立了35 MW再压缩式S-CO2循环的热力学和经济性模型,考察了关键参数对循环性能的影响。构建了反向传播神经网络结合遗传算法的优化方法(BP-GA),对循环性能进行多目标优化。结果表明,回热器总热导率的增加可提升循环效率,但存在上限;透平入口温度、循环最低和最高压力、分流比与循环性能分别存在显著的非单调作用关系,优化后的设计值依次为639.14 ℃、8.10 MPa、29.74 MPa和0.70。与初始设计值下的循环性能相比,优化后的循环系统度电成本降低了11.1 %,循环热效率和比功分别提高了5.1 %和27.6 %。

关键词: 超临界二氧化碳, 再压缩布雷顿循环, 遗传算法, 整体优化, 热力学

Abstract:

The solar thermal power generation combined with large-scale thermal storage unit has the advantages of stable output of power, and excellent deep peak load regulation capability. Introduction of the supercritical CO2 Brayton cycle (S-CO2 cycle) can further improve the heat to electricity conversion efficiency. Most of the existing studies evaluated the performance of S-CO2 cycle based on a single index, leading to inconsistent evaluation results. Hence, it is necessary to carry out multi-index comprehensive evaluation to objectively reflect the cycle performance. In the present paper, mathematical models were established to investigate the thermodynamic performance and economy of a 35MW recompression S-CO2 cycle, and the effects of critical parameters on cycle performance was analyzed. A BP-GA optimization method of back propagation neural network combined with elitist nondominated sorting genetic algorithm was constructed for multi-objective optimization of cycle performance. The results indicate that the cycle efficiency increases with an increasing total thermal conductivity of the recuperators, but there is a ceiling on growth. There are significant non-monotonic relations between turbine inlet temperature, minimum cycle pressure, maximum cycle pressure, split ratio and cycle performance, and the corresponding optimal values are 639.14 ºC, 8.10 MPa, 29.74 MPa and 0.70, respectively. Compared with the cycle performance based on the design conditions, the optimized cycle shows a reduction of 11.1 % in LCOE, and an increase of 5.1 % and 27.6 % in efficiency and specific work, respectively.

Key words: supercritical carbon dioxide, recompression Brayton cycle, genetic algorithm, global optimization, thermodynamics

中图分类号: