化工学报, 2022, 73(4): 1575-1584 doi: 10.11949/0438-1157.20211147

催化、动力学与反应器

一步水热法制备电解水析氧反应Ni3S2@Mo2S3高效催化剂

赵娟,, 吴梦成, 雷惊雷, 李凌杰,

重庆大学化学化工学院,重庆 400044

One-step hydrothermal method toward preparation of Ni3S2@Mo2S3 high-efficient catalyst for oxygen evolution reaction in water electrolysis

ZHAO Juan,, WU Mengcheng, LEI Jinglei, LI Lingjie,

School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China

通讯作者: 李凌杰(1974—),女,博士,教授,ljli@cqu.edu.cn

收稿日期: 2021-08-12   修回日期: 2022-03-21  

基金资助: 国家自然科学基金项目.  22072008
重庆大学大型仪器基金项目

Received: 2021-08-12   Revised: 2022-03-21  

作者简介 About authors

赵娟(1997—),女,硕士研究生,15182935663@163.com , E-mail:15182935663@163.com

摘要

采用一步水热法,由泡沫钼镍合金同时提供钼源和镍源在泡沫钼镍合金表面原位制备了Ni3S2@Mo2S3,并将其直接作为自支撑电极用于催化碱性介质中的电解水析氧反应(OER)。利用多种表征测试技术研究了样品的形貌、组成、OER电催化性能,结果显示:Ni3S2@Mo2S3呈纳米板形貌,由六方Ni3S2和单斜Mo2S3按5∶1的比例复合而成;在1 mol·L-1 KOH 溶液中,Ni3S2@Mo2S3催化剂仅需要170 mV过电位就可达到10 mA·cm-2电流密度(欧姆补偿后),且在50 h的稳定性测试期间性能基本无衰减,优于贵金属催化剂IrO2以及文献报道的Ni-Mo基复合催化剂。Ni3S2@Mo2S3具有优异电催化性能的原因可归于不同过渡金属化合物的协同作用、原位生长自支撑、电化学活性面积大以及液下疏气性等因素。

关键词: 水热 ; 电化学 ; 催化 ; 析氧反应

Abstract

The Ni3S2@Mo2S3 self-supported catalyst for oxygen evolution reaction in water electrolysis was in situ synthesized on MoNi foam (MNF) by one-step hydrothermal method with MNF as the sources of Ni and Mo. The morphology, composition and OER electrocatalytic performance of the as-prepared catalyst were characterized by the corresponding characterization techniques and electrochemical methods. The catalyst was consisted of irregular nano-slabs with the composition of hexagonal Ni3S2 and monoclinic Mo2S3 in a ratio of 5∶1. The as-prepared Ni3S2@Mo2S3 only needed an overpotential of 170 mV (after IR compensation) to drive a current density of 10 mA·cm-2 in 1 mol·L-1 KOH with negligible degradation during the 50 h stability test, which was superior to the commercial catalyst IrO2 and other Ni-Mo based catalysts reported. The excellent electrocatalytic performance of Ni3S2@Mo2S3 can be attributed to the synergistic effect of different transition metal compounds, self-supporting in situ growth, large electrochemically active area, and aerophobicity under liquid.

Keywords: hydrothermal ; electrochemistry ; catalysis ; oxygen evolution reaction

PDF (3671KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

赵娟, 吴梦成, 雷惊雷, 李凌杰. 一步水热法制备电解水析氧反应Ni3S2@Mo2S3高效催化剂[J]. 化工学报, 2022, 73(4): 1575-1584. doi:10.11949/0438-1157.20211147

ZHAO Juan, WU Mengcheng, LEI Jinglei, LI Lingjie. One-step hydrothermal method toward preparation of Ni3S2@Mo2S3 high-efficient catalyst for oxygen evolution reaction in water electrolysis[J]. CIESC Journal, 2022, 73(4): 1575-1584. doi:10.11949/0438-1157.20211147

引 言

氢能被认为是21世纪最具潜力的清洁能源[1-2]。在众多制氢方法中,电解水制氢因其方法简单、制备的氢气纯度高等特点而引起了研究者的广泛关注[3-4]。电解水制氢过程包括两个半反应——阳极的析氧反应(OER)与阴极的析氢反应(HER)。其中,析氧反应为四电子转移过程,具有缓慢的反应动力学,严重制约电解水制氢的效率[5-7]。因此,制备具有高催化活性的OER催化剂是提高电解水制氢效率的关键。

IrO2/RuO2等贵金属材料具有很好的OER催化活性,但它们储量少、价格高,不适用于规模化工业应用[8-10]。过渡金属硫化物[11-13]、(氢)氧化物[14-16]、磷化物[17-19]等储量丰富且具有较好的OER催化活性,被认为是上述贵金属催化剂最具前景的替代者。但单一的过渡金属化合物如Mo2S3,催化性能很不理想。研究发现,不同过渡金属之间的协同效应有助于提高催化性能[20-21],一些复合过渡金属化合物如Ni3S2/Fe9S10、Ni3S2/MnS、CoS x /Ni3S2[22-24]等表现出很好的催化性能。因此,推测可以通过复合其他过渡金属化合物如Ni3S2的方法提高Mo2S3的催化性能。但目前复合过渡金属催化剂的制备通常采用多步的(电)沉积[25-27]、水热[28-30]等方法,步骤复杂,还会造成催化剂稳定性较差的问题。因此,如何简便地制备Ni3S2@Mo2S3复合金属催化剂用于高效催化OER反应是一项具有挑战性的工作。

本文利用泡沫钼镍合金的三维多孔骨架及可以同时提供钼源和镍源的优势,采用一步水热法直接在泡沫钼镍合金表面原位制备Ni3S2@Mo2S3复合金属催化剂,表征催化剂的形貌、组成,考察其在碱性电解液中的OER催化性能以及稳定性,以期为高效复合过渡金属催化剂的设计和制备提供参考。

1 实验材料和方法

1.1 材料和试剂

泡沫钼镍合金(MoNi foam, MNF),厚度为 1 mm,PPI为95,其中钼的质量分数为85%,镍的质量分数为15%,购买于昆山广嘉源新材料有限公司;无水乙醇、丙酮,分析纯,购于国药集团化学试剂有限公司;盐酸,分析纯,购于重庆川东化工(集团)有限公司;硫脲、氢氧化钾,分析纯,购于成都市科龙化工试剂厂;六次甲基四胺,分析纯,购于重庆博艺化学试剂有限公司;二氧化铱,分析纯,购于上海阿拉丁生化科技股份有限公司。

1.2 催化剂的制备

将泡沫钼镍合金裁剪成1 cm × 4 cm的长方形片,在纯水、无水乙醇、丙酮、3 mol·L-1 HCl、纯水中各超声清洗10 min, 然后置于60℃的真空干燥箱中干燥12 h以上,备用。

Ni3S2@Mo2S3的制备:配制含有0.133 mol·L-1 硫脲和0.067 mol·L-1六次甲基四胺的水热介质,移取30 ml水热介质至高压反应釜的聚四氟乙烯内胆中(容积为40 ml),然后将经过前处理后的泡沫钼镍合金片垂直放入反应釜内胆中,将内胆置于不锈钢外壳中,拧紧密封,于200℃下反应8 h,自然冷却至室温后,取出泡沫钼镍合金片用大量纯水冲洗,干燥后备用。通过称量法确定催化剂的负载量为 2.9 mg·cm-2

贵金属IrO2对照样的制备:称取14.5 mg商业IrO2,将其分散于含有20 μl 5% (质量分数) Nafion溶液、780 μl 纯水和200 μl无水乙醇的混合液中,超声处理30 min以形成均匀的油墨。然后移取总量为200 μl的上述催化剂油墨分多次滴涂到经过预处理的泡沫钼镍合金片上,真空干燥12 h以上,备用。IrO2的负载量约为2.9 mg·cm-2

1.3 分析测试仪器

场发射扫描电子显微镜(FE-SEM),JSM-7800F型,日本电子株式会社,扫描电压为5 kV;X射线衍射仪(XRD),PANalytical X’pertPro MPD,荷兰Panalytical分析仪器公司,以Cu-Kα作为阳极靶面,工作管压和管流分别为40 kV、40 mA;X射线光电子能谱仪(XPS),赛默飞世尔科技的ESCALAB250Xi型,Al-Kα;接触角测量仪(CA),OCA20型,德国Dataphysics公司,静态条件下,通过气体(4 µl)接触角测量样品表面疏气性;电化学工作站CHI 660E型,上海辰华有限公司。

1.4 电化学测试

装配三电极体系进行电化学测量:Ni3S2@Mo2S3/MNF及对照样IrO2/MNF和空白MNF分别作为工作电极,Hg/HgO为参比电极,石墨板为对电极,氧气饱和的1 mol·L-1 KOH溶液为电解液。采用线性扫描伏安法(LSV)测试催化剂的催化活性,扫速为 1 mV·s-1。采用计时电位法(CP)测试催化剂的稳定性,恒定电流密度为10 mA·cm-2,测试时间为50 h。采用电化学阻抗谱技术(EIS)测试电荷转移电阻,频率范围设置为 10-2~105 Hz,所加的交流信号幅值为±5 mV。采用循环伏安法(CV)估算双电层电容Cdl值进而计算催化剂的电化学活性面积ECSA,循环伏安的电位扫描范围为开路电位(OCP)±50 mV(非法拉第区域)[31],扫速分别为10、20、30、40、50 mV·s-1;直线拟合不同扫速下的∆j/2 (∆j = ja - jcjajc分别为开路电位OCP下的阳极电流密度和阴极电流密度)与扫速的关系,得到的斜率即为Cdl值;进一步由公式ECSA = (Cdl/Cs) × ASA计算得到电化学活性面积ECSA,其中Cdl为双电层电容,Cs是材料的特征电容值(通常取0.04 mF·cm-2[32-34],ASA为电极的实际表面积。所有测试均在25℃下完成。所有电位均统一换算为可逆氢电位(RHE)。

2 实验结果与讨论

2.1 催化剂的形貌、组成表征结果

利用FE-SEM观察一步水热法制备的物质形貌,如图1所示。可以看出,所制备的物质呈纳米板形貌,均匀分布在泡沫镍钼合金表面。将水热产物从泡沫镍钼合金基底表面剥离,利用XRD分析水热产物的晶体结构,结果如图2(a)所示。2θ角为21.7°、31.1°、37.7°、44.3°、50.1°、55.3°、68.9°、73.0°、77.8°和86.2°的衍射峰对应于六方Ni3S2(PDF#44-1418)的(1 0 1)、(1 1 0)、(0 0 3)、(2 0 2)、(2 1 1)、(3 0 0)、(3 0 3)、(2 1 4)、(4 0 1)和(3 2 1)晶面,2θ角为16.2°、21.0°、31.6°和42.9°的衍射峰则对应于单斜Mo2S3(PDF#40-0972)的(-1 0 1)、(0 0 2)、(1 1 0)和(0 1 3)晶面。由此可以得出,水热产物由六方Ni3S2和单斜Mo2S3组成。进一步利用XPS确定水热产物的化学组成。XPS全谱图显示水热产物主要由镍、钼和硫三种元素组成,另外还出现了氧峰,主要由样品在空气中放置时引入[35]图2(b)为XPS Ni 2p高分辨谱,855.8 eV 和 873.4 eV 处的峰分别对应于Ni 2p3/2和Ni 2p1/2,而861.3 eV和 879.5 eV 处的峰则为它们对应的卫星峰,853.08 eV 处的小峰则被认为是Ni3S2的特征峰[36-38]。在XPS Mo 3d高分辨谱中[图2(c)],235.3 eV和 232.2 eV的峰分别对应于Mo2S3中钼元素的Mo 3d3/2和Mo 3d5/2[39-40]图2(d)为XPS S 2p高分辨谱,结合能为162.1 eV和160.8 eV的峰对应于金属硫化物中硫元素的S 2p1/2 和S 2p3/2,而169.00 eV处的峰则对应于高氧化态硫物种,可能是由于金属硫化物在空气中氧化所致 [41-42]。对XPS结果进行半定量分析,可以得出水热产物中Ni3S2和Mo2S3以 5∶1的比例复合而成。

图1

图1   水热样品在不同放大倍数下的FE-SEM图像

Fig.1   FE-SEM images at different resolutions of the hydrothermal sample


图2

图2   水热产物的XRD与XPS表征结果

Fig.2   XRD patterns and XPS spectra of the hydrothermal products


根据上述表征结果,推测水热过程中发生的反应为[43-44]

CS(NH2)2+2H2OCO2+2NH3+H2S
(CH2)6N4+10H2O6HCHO+4NH3+4H2O
3Ni+2H2SNi3S2+2H2
2Mo+3H2SMo2S3+3H2

在反应釜内的高温高压环境中,水热介质中的硫脲CS(NH2)2水解为CO2、NH3和H2S,六次甲基四胺(CH2)6N4水解为甲醛和氨水;溶解于水热介质中的H2S腐蚀泡沫镍钼合金生成Ni3S2和Mo2S3。由于Ni比Mo化学活性更高,更易于被H2S腐蚀,所以产物中Ni元素的含量大大提高。水热介质中添加六次甲基四胺主要有两个方面的作用:一是中和硫脲水解产生的CO2和过量H2S,避免水热介质酸性过强;二是作为均相沉淀剂使生成物均匀地分布在泡沫钼镍合金表面[45]

2.2 电催化性能测试结果

图3(a)为Ni3S2@Mo2S3/MNF及对照样IrO2/MNF、空白MNF在氧气饱和的1 mol·L-1 KOH溶液中的LSV曲线(进行了IR补偿)。可以看出,Ni3S2@Mo2S3/MNF在10 mA·cm-2电流密度下的过电位η10为170 mV,远小于贵金属对照样IrO2/MNF的286 mV和空白MNF的366 mV。图3(b)为对应OER过程的EIS测试结果,插图为拟合阻抗谱所用等效电路。解析阻抗谱可以得到,Ni3S2@Mo2S3/MNF、空白MNF和IrO2/MNF在OER过程中的电荷转移电阻Rct分别为1.185、3.627、4.307Ω,其中Ni3S2@Mo2S3/MNF的Rct最小,而IrO2/MNF的Rct最大,这可能是由于IrO2/MNF样品制备过程中使用了粘接剂所致。EIS结果说明Ni3S2@Mo2S3在OER过程中具有更快的电荷转移速率,即Ni3S2@Mo2S3/MNF具有更快的动力学。图3(c)为Ni3S2@Mo2S3/MNF、IrO2/MNF在氧气饱和的1 mol·L-1 KOH溶液中的CP曲线(电流密度为10 mA·cm-2)。可以看出,在长达50 h的稳定性测试过程中,Ni3S2@Mo2S3/MNF过电位仅增加了约35 mV,而IrO2/MNF过电位却增加了约78 mV,表明Ni3S2@Mo2S3/MNF具有更好的稳定性。图3(d)为50 h稳定性测试后Ni3S2@Mo2S3/MNF的表面形貌FE-SEM图像,可以看出,Ni3S2@Mo2S3的初始纳米板结构基本保存,但其上均匀分布了大量纳米须,可能是OER过程中硫化物转变成氢氧化物所致[46-47]表1对比了本工作制备的Ni3S2@Mo2S3与文献报道的Ni-Mo基复合催化剂的催化性能。可以看出,本工作制备的Ni3S2@Mo2S3具有优异的OER催化性能。

图3

图3   电催化性能测试结果

Fig.3   Electrocatalytic performance


表1   Ni-Mo基复合催化剂催化性能比较

Table 1  Comparison of the OER electrocatalytic performance of Ni-Mo based catalysts

催化剂η10/mVStability/h文献
Ni3S2@Mo2S3/NMF17050this work
MoS2/NiS/NF21610000 cycles[48]
MoS2/NiS227824[49]
MoS2/Ni3S221810[50]
Ni3S2@MoS2/FeOOH23450[51]
MoS2-Ni3S2 HNRs/NF24948[52]
light Fe-doped (NiS2/MoS2)/CNT234[53]
NiMoS26015[54]
MoS2/NiS yolk-shell35024[55]

新窗口打开| 下载CSV


2.3 电催化机理讨论

为了进一步探究Ni3S2@Mo2S3优异电催化性能的机理,测试了其电化学活性面积和液下疏气性质。电化学活性面积指的是参与电化学反应的有效面积,其通常与双电层电容(Cdl)呈正相关[56]Cdl可通过拟合不同扫速下的CV曲线得到。图4(a)~(c)为Ni3S2@Mo2S3/MNF、空白MNF、IrO2/MNF于不同扫速下的CV曲线。拟合不同扫速下的Δj/2与扫速的关系,得到的直线斜率则为Cdl值,如图4(d)所示。空白MNF、IrO2/MNF的Cdl值分别为0.6、4.3 mF·cm-2,而Ni3S2@Mo2S3/MNF的Cdl值高达13.2 mF·cm-2。进一步计算可以得出Ni3S2@Mo2S3/MNF、空白MNF、IrO2/MNF的电化学活性面积ECSA分别为330、15、108 cm2。很明显,Ni3S2@Mo2S3的纳米板形貌具有更大的电化学活性面积,可以提供更多的活性位点,有利于析氧反应的进行,从而提高催化性能。

图4

图4   CV曲线和Cdl拟合结果

Fig.4   CV curves and fitting results of Cdl


析氧过程中,生成的氧气泡先聚集在电极表面,只有当气泡的大小达到一定尺寸时,才脱离电极表面析出[57-58]。如果电极表面不具有液下疏气性质,生成的气泡则难以快速脱离电极表面,就会增加阻力、提高过电位,导致“气泡效应”[59],从而对催化性能产生消极影响。此外,催化剂表面吸附的气泡还可能掩盖活性位点,导致催化活性降低。因此,电极表面的液下疏气性质对于其OER催化性能至关重要。液下疏气性质可以通过气体接触角的测试表征,气体接触角越大则表明电极表面的液下疏气性越好。图5(a)~(c)分别为Ni3S2@Mo2S3/MNF、空白MNF、IrO2/MNF在1 mol·L-1 KOH溶液中的气体接触角(CA),其值分别为141.3°、130.4°和137.6°。可以看出,Ni3S2@Mo2S3/MNF的液下疏气性略优于空白MNF和IrO2/MNF,即Ni3S2@Mo2S3/MNF更利于气泡的脱离析出,这对OER过程是较为有利的。

图5

图5   气体接触角测试结果

Fig.5   Gas contact angles of different sample surfaces


为了解释Ni3S2与Mo2S3之间的协同催化作用,初步构建了该体系的理论模型,如图6所示。可以看出,Ni3S2(1 1 0)面与Mo2S3(1 0 -1)面易于复合增大结构稳定性,且复合体系表面及边缘存在较多活性位点,有助于改善OER性能[60-61]

图6

图6   理论模型(蓝色代表Ni原子;绿色代表Mo原子;黄色代表S原子)

Fig.6   Theoretical models(atom colors: Ni, blue; Mo, green; and S, yellow)


综合上述结果,Ni3S2@Mo2S3具有优异OER催化性能的原因可归于以下几点:(1)不同过渡金属化合物Ni3S2和Mo2S3的协同作用;(2)Ni3S2@Mo2S3原位生长在泡沫钼镍合金集流体上直接作为自支撑电极用于电解水析氧反应,保证了电极良好的导电性与机械稳定性,有利于电荷的快速转移及电极保持长期稳定性;(3)Ni3S2@Mo2S3的纳米板形貌显著提高了电化学活性面积,有利于电催化性能; (4)Ni3S2@Mo2S3/MNF具有液下疏气性质,有利于生成的氧气泡的快速脱离析出。

3 结 论

(1)以泡沫钼镍合金为集流体,由其同时提供钼源和镍源,采用一步水热法在其表面原位制备了二元过渡金属硫化物Ni3S2@Mo2S3,直接作为自支撑电极用于催化碱性介质中的电解水析氧反应。

(2)FE-SEM、XRD、XPS 表征结果显示Ni3S2@Mo2S3呈纳米板形貌,由六方Ni3S2和单斜Mo2S3按5∶1复合而成。

(3)LSV、CP、EIS测试结果表明,在1 mol·L-1 KOH电解液中,Ni3S2@Mo2S3催化剂仅需要170 mV过电位就可达到10 mA·cm-2电流密度(欧姆补偿后),且在50 h的稳定性测试期间性能基本无衰减,优于贵金属催化剂IrO2以及目前文献报道的Ni-Mo基复合催化剂。

(4)Ni3S2@Mo2S3具有优异电催化性能的原因可归于不同过渡金属化合物的协同作用、原位生长自支撑、电化学活性面积大以及液下疏气性等因素。

参考文献

Ma X, Zhang X Y, Yang M, et al.

High-pressure microwave-assisted synthesis of WS x /Ni9S8/NF hetero-catalyst for efficient oxygen evolution reaction

[J]. Rare Metals, 2021, 40(5): 1048-1055.

[本文引用: 1]

McCrory C C L, Jung S, Peters J C, et al.

Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction

[J]. Journal of the American Chemical Society, 2013, 135(45): 16977-16987.

[本文引用: 1]

Huang W H, Li X M, Yang X F, et al.

Highly efficient electrocatalysts for overall water splitting: mesoporous CoS/MoS2 with hetero-interfaces

[J]. Chemical Communications (Cambridge, England), 2021, 57(39): 4847-4850.

[本文引用: 1]

Inamdar A I, Chavan H S, Hou B, et al.

A robust nonprecious CuFe composite as a highly efficient bifunctional catalyst for overall electrochemical water splitting

[J]. Small, 2020, 16(2): 1905884.

Zeng L Y, Sun K A, Yang Z C, et al.

Tunable 3D hierarchical Ni3S2 superstructures as efficient and stable bifunctional electrocatalysts for both H2 and O2 generation

[J]. Journal of Materials Chemistry A, 2018, 6(10): 4485-4493.

[本文引用: 1]

Dueso C, Izquierdo M T, García-Labiano F, et al.

Effect of H2S on the behaviour of an impregnated NiO-based oxygen-carrier for chemical-looping combustion (CLC)

[J]. Applied Catalysis B: Environmental, 2012, 126: 186-199.

[本文引用: 1]

Zhou Y, Yang X G, Xi S Q, et al.

Vermicular Ni3S2-Ni(OH)2 heterostructure supported on nickel foam as efficient electrocatalyst for hydrogen evolution reaction in alkaline solution

[J]. International Journal of Hydrogen Energy, 2020, 45(19): 11138-11147.

[本文引用: 1]

Li T T, Zuo Y P, Lei X M, et al.

Regulating the oxidation degree of nickel foam: a smart strategy to controllably synthesize active Ni3S2 nanorod/nanowire arrays for high-performance supercapacitors

[J]. Journal of Materials Chemistry A, 2016, 4(21): 8029-8040.

Li H B, Yu M H, Wang F X, et al.

Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials

[J]. Nature Communications, 2013, 4: 1894.

[本文引用: 1]

Pan Q, Liu Y H, Zhao L J.

Co9S8/Mo2S3 nanorods on CoS2 laminar arrays as advanced electrode with superior rate properties and long cycle life for asymmetric supercapacitors

[J]. Chemical Engineering Journal, 2018, 351: 603-612.

[本文引用: 1]

Cao L J, Yang S B, Gao W, et al.

Direct laser-patterned micro-supercapacitors from paintable MoS2 films

[J]. Small, 2013, 9(17): 2905-2910.

[本文引用: 1]

Zhang W X, Liu M S, Liang H, et al.

Flower-like nanosheets directly grown on Co foil as efficient bifunctional catalysts for overall water splitting

[J]. Journal of Colloid and Interface Science, 2021, 587: 650-660.

[本文引用: 1]

原荷峰, 马自在, 王淑敏, .

富氧空位Co3O4纳米线的制备及其电解水性能研究

[J]. 化工学报, 2020, 71(12): 5831-5841.

[本文引用: 1]

Yuan H F, Ma Z Z, Wang S M, et al.

Engineering oxygen vacancy-rich Co3O4 nanowire as high-efficiency and durable bifunctional electrocatalyst for overall alkaline water splitting

[J]. CIESC Journal, 2020, 71(12): 5831-5841.

[本文引用: 1]

马佳欢, 杨微微, 白羽, .

二维金属有机框架及其衍生物用于电催化分解水的研究进展

[J]. 化工学报, 2020, 71(9): 4006-4030.

[本文引用: 1]

Ma J H, Yang W W, Bai Y, et al.

Research progress of two-dimensional metal organic frameworks and their derivatives for electrocatalytic water splitting

[J]. CIESC Journal, 2020, 71(9): 4006-4030.

[本文引用: 1]

Chen Z J, Duan X G, Wei W, et al.

Iridium-based nanomaterials for electrochemical water splitting

[J]. Nano Energy, 2020, 78: 105270.

[本文引用: 1]

Zhang L, Ren X, Guo X D, et al.

Efficient hydrogen evolution electrocatalysis at alkaline pH by interface engineering of Ni2P-CeO2

[J]. Inorganic Chemistry, 2018, 57(2): 548-552.

[本文引用: 1]

Zhou Y N, Wang F L, Dou S Y, et al.

Motivating high-valence Nb doping by fast molten salt method for NiFe hydroxides toward efficient oxygen evolution reaction

[J]. Chemical Engineering Journal, 2022, 427: 131643.

[本文引用: 1]

Zhou Y N, Yu W L, Cao Y N, et al.

S-doped nickel-iron hydroxides synthesized by room-temperature electrochemical activation for efficient oxygen evolution

[J]. Applied Catalysis B: Environmental, 2021, 292: 120150.

Qin J F, Yang M, Chen T S, et al.

Ternary metal sulfides MoCoNiS derived from metal organic frameworks for efficient oxygen evolution

[J]. International Journal of Hydrogen Energy, 2020, 45(4): 2745-2753.

[本文引用: 1]

Yang Q, Li T, Lu Z Y, et al.

Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction

[J]. Nanoscale, 2014, 6(20): 11789-11794.

[本文引用: 1]

Guan B, Li Y, Yin B Y, et al.

Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor

[J]. Chemical Engineering Journal, 2017, 308: 1165-1173.

[本文引用: 1]

王焕英, 宋秀芹.

以六次甲基四胺为沉淀剂制备纳米ZrO2的研究

[J]. 人工晶体学报, 2005, 34(4): 615-619.

[本文引用: 1]

Wang H Y, Song X Q.

Study on preparing nano-sized ZrO2 using hexamethy lenete tramine as precipitator

[J]. Journal of Synthetic Crystals, 2005, 34(4): 615-619.

[本文引用: 1]

沈苗.

泡沫镍负载Ni3S2/聚吡咯复合材料的制备及其超容性能研究

[D]. 长沙: 湖南师范大学, 2020.

[本文引用: 1]

Shen M.

Preparation of Ni3S2/polypyrrole composite material supported on nickel foam for supercapacitor

[D]. Changsha: Hunan Normal University, 2020.

[本文引用: 1]

朱立伟.

医用电容器电极材料的水热一步合成及其电化学性能

[D]. 衡阳: 南华大学, 2016.

[本文引用: 1]

Zhu G L, Ge R X, Qu F L, et al.

In situ surface derivation of an Fe-Co-Bi layer on an Fe-doped Co3O4 nanoarray for efficient water oxidation electrocatalysis under near-neutral conditions

[J]. Journal of Materials Chemistry A, 2017, 5(14): 6388-6392.

Bai Y, Zhang L C, Li Q L, et al.

Self-supported CdP2-CDs-CoP for high-performance OER catalysts

[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(3): 1297-1303.

[本文引用: 1]

Chai Y M, Zhang X Y, Lin J H, et al.

Three-dimensional VO x /NiS/NF nanosheets as efficient electrocatalyst for oxygen evolution reaction

[J]. International Journal of Hydrogen Energy, 2019, 44(21): 10156-10162.

[本文引用: 1]

陈保卫, 高文君, 徐冬, .

硫化铁/硫化钴复合材料的合成及催化应用

[J]. 化工新型材料, 2020, 48(S1): 85-88, 93.

Chen B W, Gao W J, Xu D, et al.

Synthesis and catalytic application of FeS2/CoS2 composite

[J]. New Chemical Materials, 2020, 48(S1): 85-88, 93.

Niu Y L, Li W, Wu X J, et al.

Amorphous nickel sulfide nanosheets with embedded vanadium oxide nanocrystals on nickel foam for efficient electrochemical water oxidation

[J]. Journal of Materials Chemistry A, 2019, 7(17): 10534-10542.

[本文引用: 1]

Francàs L, Corby S, Selim S, et al.

Spectroelectrochemical study of water oxidation on nickel and iron oxyhydroxide electrocatalysts

[J]. Nature Communications, 2019, 10: 5208.

[本文引用: 1]

Li H Y, Wang X L, Wang T, et al.

A facile, green and time-saving method to prepare partially crystalline NiFe layered double hydroxide nanosheets on nickel foam for superior OER catalysis

[J]. Journal of Alloys and Compounds, 2020, 844: 156224.

Zhang K, Wang W H, Kuai L, et al.

A facile and efficient strategy to gram-scale preparation of composition-controllable Ni-Fe LDHs nanosheets for superior OER catalysis

[J]. Electrochimica Acta, 2017, 225: 303-309.

[本文引用: 1]

Desalegn B Z, Jadhav H S, Seo J G.

Interface modulation of a layer-by-layer electrodeposited Fe x Co(1– x)P/NiP@CC heterostructure for high-performance oxygen evolution reaction

[J]. Sustainable Energy & Fuels, 2020, 4(4): 1863-1874.

[本文引用: 1]

Zhou M, Sun Q Q, Shen Y Q, et al.

Fabrication of 3D microporous amorphous metallic phosphides for high-efficiency hydrogen evolution reaction

[J]. Electrochimica Acta, 2019, 306: 651-659.

Wang D, Wang Y J, Fu Z Y, et al.

Cobalt-nickel phosphate composites for the all-phosphate asymmetric supercapacitor and oxygen evolution reaction

[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 34507-34517.

[本文引用: 1]

Li L J, Huang W J, Lei J L, et al.

Holey nanospheres of amorphous bimetallic phosphide electrodeposited on 3D porous Ni foam for efficient oxygen evolution

[J]. Applied Surface Science, 2019, 479: 540-547.

[本文引用: 1]

Chang J L, Chen L M, Zang S Q, et al.

The effect of Fe(Ⅲ) cations in electrolyte on oxygen evolution catalytic activity of Ni(OH)2 electrode

[J]. Journal of Colloid and Interface Science, 2020, 569: 50-56.

[本文引用: 1]

Yang Y Y, Meng H X, Yan S H, et al.

The in situ construction of NiFe sulfide with nanoarray structure on nickel foam as efficient bifunctional electrocatalysts for overall water splitting

[J]. Journal of Alloys and Compounds, 2021, 874: 159874.

[本文引用: 1]

Zhang Y, Fu J L, Zhao H, et al.

Tremella-like Ni3S2/MnS with ultrathin nanosheets and abundant oxygen vacancies directly used for high speed overall water splitting

[J]. Applied Catalysis B: Environmental, 2019, 257: 117899.

Shit S, Chhetri S, Fang W, et al.

Cobalt sulfide/nickel sulfide heterostructure directly grown on nickel foam: an efficient and durable electrocatalyst for overall water splitting application

[J]. ACS Applied Materials & Interfaces, 2018, 10(33): 27712-27722.

[本文引用: 1]

Zhang Z, Li X P, Zhong C, et al.

Spontaneous synthesis of silver-nanoparticle-decorated transition-metal hydroxides for enhanced oxygen evolution reaction

[J]. Angewandte Chemie International Edition, 2020, 59(18): 7245-7250.

[本文引用: 1]

Wang X X, Li L, Xu L G, et al.

An efficient and stable MnCo@NiS catalyst for oxygen evolution reaction constructed by a step-by-step electrodeposition way

[J]. Journal of Power Sources, 2021, 489: 229525.

Che Q J, Li Q, Chen X H, et al.

Assembling amorphous (Fe-Ni)Co x -OH/Ni3S2 nanohybrids with S-vacancy and interfacial effects as an ultra-highly efficient electrocatalyst: inner investigation of mechanism for alkaline water-to-hydrogen/oxygen conversion

[J]. Applied Catalysis B: Environmental, 2020, 263: 118338.

[本文引用: 1]

Zhu L W.

Hydrothermal one-step synthesis of nickel/cobalt double hydroxide composite containing reduced graphene oxide and layered nickel/cobalt double hydroxide

[D]. Hengyang: University of South China, 2016.

[本文引用: 1]

Wang Q X, Dastafkan K, Zhao C.

Design strategies for non-precious metal oxide electrocatalysts for oxygen evolution reactions

[J]. Current Opinion in Electrochemistry, 2018, 10: 16-23.

[本文引用: 1]

Xu S R, Du Y S, Liu X, et al.

Three-dimensional (3D) hierarchical coral-like Mn-doped Ni2P-Ni5P4/NF catalyst for efficient oxygen evolution

[J]. Journal of Alloys and Compounds, 2020, 826: 154210.

[本文引用: 1]

Zhou Y, Xi S Q, Yang X G, et al.

In situ hydrothermal growth of metallic Co9S8-Ni3S2 nanoarrays on nickel foam as bifunctional electrocatalysts for hydrogen and oxygen evolution reactions

[J]. Journal of Solid State Chemistry, 2019, 270: 398-406.

Jin S.

Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts

[J]. ACS Energy Letters, 2017, 2(8): 1937-1938.

[本文引用: 1]

Xu X B, Zhong W, Zhang L, et al.

MoS2/NiS heterostructure grown on nickel foam as highly efficient bifunctional electrocatalyst for overall water splitting

[J]. International Journal of Hydrogen Energy, 2020, 45(35): 17329-17338.

[本文引用: 1]

Lin J H, Wang P C, Wang H H, et al.

Defect-rich heterogeneous MoS2/NiS2 nanosheets electrocatalysts for efficient overall water splitting

[J]. Advanced Science, 2019, 6(14): 1900246.

[本文引用: 1]

Zhang J, Wang T, Pohl D, et al.

Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity

[J]. Angewandte Chemie-International Edition, 2016, 55(23): 6702-6707.

[本文引用: 1]

Zheng M Y, Guo K L, Jiang W J, et al.

When MoS2 meets FeOOH: a “one-stone-two-birds” heterostructure as a bifunctional electrocatalyst for efficient alkaline water splitting

[J]. Applied Catalysis B: Environmental, 2019, 244: 1004-1012.

[本文引用: 1]

Yang Y Q, Zhang K, Ling H L, et al.

MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting

[J]. ACS Catalysis, 2017, 7(4): 2357-2366.

[本文引用: 1]

Li C Y, Liu M D, Ding H Y, et al.

A lightly Fe-doped (NiS2/MoS2)/carbon nanotube hybrid electrocatalyst film with laser-drilled micropores for stabilized overall water splitting and pH-universal hydrogen evolution reaction

[J]. Journal of Materials Chemistry A, 2020, 8(34): 17527-17536.

[本文引用: 1]

Wang C Z, Shao X D, Pan J, et al.

Redox bifunctional activities with optical gain of Ni3S2 nanosheets edged with MoS2 for overall water splitting

[J]. Applied Catalysis B: Environmental, 2020, 268: 118435.

[本文引用: 1]

Qin Q, Chen L L, Wei T, et al.

MoS2/NiS yolk-shell microsphere-based electrodes for overall water splitting and asymmetric supercapacitor

[J]. Small, 2019, 15(29): 1803639.

[本文引用: 1]

Li L J, Sun C Y, Shang B, et al.

Tailoring the facets of Ni3S2 as a bifunctional electrocatalyst for high-performance overall water-splitting

[J]. Journal of Materials Chemistry A, 2019, 7(30): 18003-18011.

[本文引用: 1]

Li L J, Cao L, He Q D, et al.

A novel strategy to simultaneously tailor morphology and electronic structure of CuCo hybrid oxides for enhanced electrocatalytic performance in overall water splitting

[J]. Sustainable Energy & Fuels, 2020, 4(6): 2775-2781.

[本文引用: 1]

Darband G B, Aliofkhazraei M, Shanmugam S.

Recent advances in methods and technologies for enhancing bubble detachment during electrochemical water splitting

[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109300.

[本文引用: 1]

Matsushima H, Iida T, Fukunaka Y.

Observation of bubble layer formed on hydrogen and oxygen gas-evolving electrode in a magnetic field

[J]. Journal of Solid State Electrochemistry, 2012, 16(2): 617-623.

[本文引用: 1]

Yang Y, Yao H Q, Yu Z H, et al.

Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range

[J]. Journal of the American Chemical Society, 2019, 141(26): 10417-10430.

[本文引用: 1]

Cheng Y, Yuan P F, Xu X H, et al.

S-edge-rich Mo x S y arrays vertically grown on carbon aerogels as superior bifunctional HER/OER electrocatalysts

[J]. Nanoscale, 2019, 11(42): 20284-20294.

[本文引用: 1]

/