水溶性带电聚合物黏结剂修饰炭电极用于增强电容去离子性能
1.
2.
Carbon electrodes modified with water-soluble charged polymer binder for enhanced capacitive deionization performance
1.
2.
通讯作者:
收稿日期: 2021-12-20 修回日期: 2022-01-26
基金资助: |
|
Received: 2021-12-20 Revised: 2022-01-26
关键词:
Keywords:
本文引用格式
王刚, 车小平, 汪仕勇, 邱介山.
WANG Gang, CHE Xiaoping, WANG Shiyong, QIU Jieshan.
引言
通过直接在炭电极表面上引入互补的固定电荷基团,可以提高模块的脱盐量和电荷效率。在膜电容去离子(MCDI)中,将离子交换膜放置在电极和脱盐通道之间,增加了电极的吸附容量并阻止了脱盐过程中从电极排出的同离子进入脱盐流道。离子交换膜的使用可以提高电荷效率并抑制阳极氧化副反应的发生,使CDI模块表现出优异的脱盐性能[27-29]。但离子交换膜高昂的成本限制了其在CDI中的应用,为了降低化学成本,用水溶性带电聚合物黏结剂制备复合CDI电极可以减少化学消耗并提高CDI性能[30-33]。2011年,Park等[34]用交联聚乙烯醇(PVA)代替聚偏二氟乙烯(PVDF)不仅减少了有机溶剂的使用,而且由于润湿性的提高而增加了电极的比电容。2018年,Jain等[35]将PVA与带电聚合物交联构筑了一种离子交换膜,并将其用于MCDI电极,降低了MCDI的成本。Kim等[18]通过将活性炭分别与多糖壳聚糖(CS)和羧甲基纤维素(CMC)结合,分别依靠CS分子中伯胺基团带的正电荷和CMC分子中羧基官能团带的负电荷来增加电极孔内的固定电荷以达到降低同离子排斥效应的能力。因此,复合电极的脱盐量和电荷效率分别达到14.1 mg/g和0.91,是使用PVDF黏结剂的近三倍。然而,在以前报道中只对一极的黏结剂进行修饰,分别只带正电或者只带负电,也就是只有一极起到离子交换膜的作用,而另一极则未带有电荷,未能完全抑制副反应及同离子排斥效应,进而影响脱盐量与电荷效率。
因此,本文将亲水性更好的羧甲基纤维素(CMC)和聚乙烯醇(PVA)作为初始黏结剂,随后分别利用磺基琥珀酸修饰CMC,季铵盐修饰PVA,使其分别带上具有负电的磺酸基团和正电的季铵盐基团,即得到带有负电的黏结剂(SCMC)和带有正电的黏结剂(QPVA)。将SCMC与QPVA组装成非对称CDI模块,系统研究其脱盐性能。
1 实 验
1.1 聚乙烯醇黏结剂的制备及其修饰
将2.5 g PVA加入47.5 g去离子水中,在90℃水浴中搅拌4 h使其充分溶解,得到质量分数为5%的PVA黏结剂。在搅拌均匀的PVA黏结剂中加入1.0 g KOH和3.5 g 2,3-环氧丙基三甲基氯化铵(GTMAC),随后在70℃水浴中搅拌4 h使其发生图1所示的反应。将反应后的上述混合物冷却至室温,沉淀在无水乙醇中,并用无水乙醇洗涤至pH呈中性以除去多余的反应物。最后将得到的固体季铵化PVA在90℃水浴中搅拌4 h使其充分溶解在去离子水中,制备得到季铵化PVA(QPVA)黏结剂。
图1
1.2 羧甲基纤维素黏结剂的制备及其修饰
将1 g CMC加入49 g质量分数为2.5%的稀醋酸溶液中,室温下搅拌4 h,制备得到质量分数为2%的CMC黏结剂。在制备好的CMC黏结剂中加入0.2 g磺基琥珀酸(SSA),室温搅拌1 h确保混合均匀,随后在110℃下通过图2所示的反应制备得到磺酸基团修饰的黏结剂(SCMC)。
图2
1.3 电极的制备及组装
首先将电极材料(商业化活性炭)、导电炭黑和黏结剂以质量比82.5∶10∶7.5在水中混合成均匀的浆液,随后将其涂覆到5 cm×7 cm的石墨片上,并在70℃下干燥8 h得到用于CDI测试的电极片,分别制备得到AC-CMC、AC-PVA、AC-SCMC、AC-QPVA电极,其中电极质量约为100 mg,厚度约为120 μm(为简化描述,在下文中AC-CMC、AC-PVA、AC-SCMC、AC-QPVA电极分别简写为AC-C、AC-P、AC-SC、AC-QP电极)。接着以AC-P和AC-QP为阳极,以AC-C和AC-SC为阴极分别组装成AC-P//AC-C和AC-QP//AC-SC模块,如图3所示,测试其CDI性能,并将其与AC-P//AC-P和在AC-P//AC-P模块中加了阴阳离子交换膜的AC-P//AC-P-M模块的CDI性能进行对比。其中,CDI模块中间隔膜厚度为1.2 mm。
图3
图3
SCMC和QPVA黏结剂修饰CDI电极的示意图
Fig.3
Schematic diagram of SCMC and QPVA binder modified CDI electrodes
1.4 电容去离子性能测试
采用流进式(single-pass mode) 操作在室温下对所组装的CDI模块进行测试。该装置由一个1 L的容器,蠕动泵,组装好的CDI模块,辰华CHI760E电化学工作站,电导率微型信号调制器,浸入式电导率电极和计算机组成。测试时,配制好的一定浓度的NaCl溶液在蠕动泵的作用下流入CDI模块,随后流经电导率电极,电导率电极将检测到的模块出水口电导率的变化传输到计算机,得到电导率随时间变化的曲线,最后经过一个循环测试的NaCl溶液重新流入储水池。测试过程中,NaCl溶液的流速为 9 ml/min,测试电压为0.6、0.8、1.0、1.2、1.4 V,吸脱附时间都是600 s。其中,脱盐量(SAC,Γ,mg/g),电荷消耗量(Σ,C/g),电荷效率(Λ)以及能耗(Econ,kJ/mol)分别由式(1)~
式中,c0为CDI模块进水口处NaCl溶液的浓度,mg/L;ct 为CDI模块出口处NaCl溶液的浓度,mg/L;Ф为NaCl溶液流经CDI模块时的体积流速,ml/s;m为两个CDI电极的总质量(电极材料、导电炭黑和黏结剂),g;t为吸附时间,s;i为吸附过程中所测得的电流,A;F为法拉第常数,96485 C/mol;M为NaCl的摩尔质量,58.5 g/mol;U为脱盐时的电压,V。
2 实验结果与讨论
图4
图4
PVA和QPVA的红外光谱图(a); CMC和SCMC的红外光谱图(b); PVA、QPVA、CMC和SCMC的Zeta电位(c)
Fig.4
FTIR spectra of PVA and QPVA (a); FTIR spectra of CMC and SCMC (b); Zeta potential of PVA, QPVA, CMC, and SCMC (c)
为了进一步验证带电官能团成功引入聚合物表面,测试了PVA、QPVA、CMC、SCMC溶液在pH分别为2、4、6、8、10时的Zeta电位,结果如图4(c)所示。从图中可以看出,PVA溶液的Zeta电位在pH为2~10的范围内都接近于零,表明在PVA表面不存在明显的带电基团,但PVA分子中存在亲水性的羟基基团,使其能作为黏结剂构筑CDI电极。与PVA相比,QPVA溶液在pH为2~10的范围内都呈现较大的正Zeta电位,表明PVA经季铵化后在其表面引入了大量带正电的官能团,这一结果与上述红外光谱表征结果一致。此外,CMC溶液和SCMC溶液在pH为2~10的范围内都呈现较大的负Zeta电位,且SCMC具有比CMC更大的负Zeta电位,这一结果表明分子中有带负电羧基官能团的CMC经磺化后又在表面引入更多的带负电的官能团,这一结果同样与CMC和SCMC红外光谱的表征结果相一致。
为了进一步验证CMC、PVA黏结剂和化学修饰得到的SCMC、QPVA黏结剂对CDI性能提升的影响,在不同电压下对AC-P//AC-C和AC-QP//AC-SC进行CDI测试,并将其与AC-P//AC-P和使用了阴阳离子交换膜的AC-P//AC-P-M进行对比,实验测得的电导率和电流随电压变化的曲线如图5(a)和(b)所示。在图5(a)中,当施加电压时,盐溶液中的离子吸附到电极上,模块出水口的盐溶液电导率先快速下降,然后缓慢上升到初始水平,表明电极吸附饱和。随后断开电源,吸附到电极两端的离子释放到水体中,表现为电导率先快速上升,再缓慢下降到平衡水平。同时,5次的不同电压循环,也表明模块具有较好的再生性能。为了更清楚地观察四个模块在脱盐过程中电导率和电流的变化,将四个模块在1.2 V下的吸附过程中电导率和对应电流的变化单独列出来,如图5(c)和(d)所示。从图中的对比可以看出,AC-P//AC-C和AC-QP//AC-SC电导率和电流的变化趋势远大于AC-P//AC-P,但AC-QP//AC-SC的电导率和电流的变化趋势与AC-P//AC-P-M相差不大,说明AC-P//AC-C和AC-QP//AC-SC在相同测试条件下具有比AC-P//AC-P更高的脱盐量和电荷效率,且AC-QP//AC-SC在脱盐量和电荷效率上与AC-P//AC-P-M相差不大。这粗略地表明水溶性带电黏结剂通过对炭电极的修饰,可以提高炭电极CDI的脱盐效果。
图5
图5
不同电压下AC-P//AC-P、AC-P//AC-C、AC-QP//AC-SC和AC-P//AC-P-M的电导率变化(a)和电流变化曲线(b);1.2 V电压下AC-P//AC-P、AC-P//AC-C、AC-QP//AC-SC和AC-P//AC-P-M的吸附线(c)和电流曲线(d)
Fig.5
The conductivity changes (a) and current density changes (b) of AC-P//AC-P, AC-P//AC-C, AC-QP//AC-SC and AC-P//AC-P-M at different cell voltages; The conductivity changes (c) and current density changes (d) of AC-P//AC-P, AC-P//AC-C, AC-QP//AC-SC and AC-P//AC-P-M under 1.2 V
为了更精确地表示改进的黏结剂对炭电极CDI性能的提升程度,通过计算得到脱盐量与电荷效率,如图6(a)和(b)所示。可以看到,在各个电压下,AC-P//AC-C的脱盐量和电荷效率较AC-P//AC-P均有所提高,且在1.2 V时,AC-P//AC-C的脱盐量可达14.58 mg/g,明显高于AC-P//AC-P的10.25 mg/g。AC-QP//AC-SC因黏结剂的化学修饰,其脱盐量和电荷效率又进一步提高,在1.2/0 V电压下,脱盐量(SAC)和电荷效率分别为17.39 mg/g和0.65,与AC-P//AC-P-M在1.2/0 V电压下的18.89 mg/g的脱盐量和0.69的电荷效率差距不大。图6(c)是四个模块在1.2/0 V下的瞬时脱盐速率曲线,从图中可以看到AC-P//AC-C、AC-QP//AC-SC和AC-P//AC-P-M的最大瞬时脱盐速率分别为2.86、3.95 和4.35 mg/(g·min),分别是AC-P//AC-P的1.16、1.59、1.76倍。图6(d)是四个模块在1.2/0 V下的Ragone曲线, AC-QP//AC-SC的Ragone曲线在图中偏右上区域,表明AC-QP//AC-SC具有比AC-P//AC-P和AC-P//AC-C更高的脱盐量和更快的脱盐速率。上述分析结果表明,带电的SCMC和QPVA黏结剂通过对炭电极的修饰,增强了炭电极的亲水性和离子选择性,加快了CDI测试中离子的传输,增强了炭电极在常规CDI测试中的脱盐量和脱盐速率。
图6
图6
初始NaCl浓度为500 mg/L时AC-P//AC-P、AC-P//AC-C、AC-QP//AC-SC和AC-P//AC-P-M在不同电压下的脱盐量(a)、电荷转移(b)、吸附速率曲线(c)和Ragone曲线(d)
Fig.6
SAC (a), charge passed (b), adsorption rate curves (c) and Ragone curves (d) of AC-P//AC-P, AC-P//AC-C, AC-QP//AC-SC, and AC-P//AC-P-M in NaCl solution with an initial concentration of 500 mg/L at different cell voltages
为探究黏结剂对CDI循环稳定性的影响,在起始浓度为500 mg/L的NaCl溶液中,将AC-P//AC-C和AC-QP//AC-SC在0.8/0 V电压下进行100次CDI测试,并将其与AC-P//AC-P和AC-P//AC-P-M的循环性能进行对比。从图7(a)~(d)所示的四个模块第1圈和第100圈常规CDI测试的吸附曲线对比可以看出,AC-P//AC-C和AC-QP//AC-SC在进行100圈循环测试后,其吸附曲线不会因同离子排斥效应而出现一个小的脱附峰,且AC-P//AC-C和AC-QP//AC-SC电导率的变化大于AC-P//AC-P,这表明AC-P//AC-C和AC-QP//AC-SC在脱盐量的保持率上优于AC-P//AC-P。此外,AC-QP//AC-SC循环100圈后,吸附曲线的重合度优于AC-P//AC-C,但不及AC-P//AC-P-M,这说明AC-QP//AC-SC的循环稳定性优于AC-P//AC-C,但不及膜电容去离子。
图7
图7
0.8/0 V的操作电压下AC-P//AC-P(a)、AC-P//AC-C(b)、AC-QP//AC-SC(c)和AC-P//AC-P-M(d)第1圈和第100圈循环的吸附曲线
Fig.7
Adsorption curves at the 1st and 100 th cycles of AC-P//AC-P (a), AC-P//AC-C (b), AC-QP//AC-SC (c), and AC-P//AC-P-M (d) under 0.8/0 V
通过计算得到四个模块在100圈CDI测试过程中的脱盐量和电荷效率,见图8(a)、(b)。AC-QP//AC-SC循环100圈后,脱盐量和电荷效率的保持率分别为80.53%和82.33%,高于AC-P//AC-C(65.48%和67.28%)和AC-P//AC-P(26.28%和20.64%),低于AC-P//AC-P-M(89.94%和90.05%),这一结果与图6(a)~(d)分析所得的结果相一致。出现上述结果的主要原因是SCMC和QPVA黏结剂在CMC和PVA黏结剂的基础上,依靠自身所带的亲水性的带电基团,增强了活性炭电极的亲水性和离子选择性,一定程度上抑制了活性炭电极在CDI测试中发生的副反应,提高了活性炭电极在常规CDI测试中的稳定性,虽然其在脱盐量、电荷效率和循环稳定性上达不到膜电容去离子的效果,但两者的差距不大,可以替代膜的作用,大大节约成本。另外,对比CDI循环过程中能耗的变化,发现AC-QP//AC-SC的能耗低于AC-P//AC-C和AC-P//AC-P[图8(c)]。
图8
图8
0.8/0 V的操作电压下,AC-P//AC-P、AC-P//AC-C、AC-QP//AC-SC和AC-P//AC-P-M的SAC(a)、电荷效率(b)和能耗(c)
Fig.8
The SAC (a), charge efficiency (b) and energy consumption (c) of AC-P//AC-P, AC-P//AC-C, AC-QP//AC-SC and AC-P//AC-P-M at 0.8/0 V
3 结 论
采用亲水性的CMC和PVA黏结剂替换疏水的PVP黏结剂,并将CMC和PVA分别经磺化和季铵化处理,使其带有更多的带电基团。将替换和修饰的黏结剂应用于CDI电极的制备中,增强了电极的亲水性和离子选择性。对AC-P//AC-C和AC-QP//AC-SC进行CDI测试时,在1.2/0 V电压下的脱盐量分别为14.58和17.39 mg/g,在0.8/0 V电压下循环 100 圈之后,脱盐量的保持率分别为65.48%和80.53%,高于AC-P//AC-P在相同条件下取得的10.25 mg/g脱盐量和26.28%脱盐量的保持率。
参考文献
A sunlight-responsive metal–organic framework system for sustainable water desalination
[J].
Recent advances in ion selectivity with capacitive deionization
[J].
Recent advances in faradic electrochemical deionization: system architectures versus electrode materials
[J].
Faradaic electrodes open a new era for capacitive deionization
[J].
Electrochemical redox cells capable of desalination and energy storage: addressing challenges of the water-energy nexus
[J].
Hierarchical porous carbon for high-performance capacitive desalination of brackish water
[J].
Efficient capacitive deionization using natural basswood-derived, freestanding, hierarchically porous carbon electrodes
[J].
共价交联法制备具有优异电容去离子脱盐性能的硼碳氮纳米片/石墨烯复合电极
[J].
Boron-nitride-carbon nanosheet/graphene composites generated by covalent cross-linking which have an excellent capacitive deionization performance
[J].
Capacitive deionization for wastewater treatment: opportunities and challenges
[J].
Carbon nanofiber@ZIF-8 derived carbon nanosheet composites with a core–shell structure boosting capacitive deionization performance
[J].
Core-shell MOF@COF motif hybridization: selectively functionalized precursors for titanium dioxide nanoparticle-embedded nitrogen-rich carbon architectures with superior capacitive deionization performance
[J].
Enhanced electrochemical stability of a zwitterionic-polymer-functionalized electrode for capacitive deionization
[J].
Highly efficient atomically dispersed Co–N active sites in porous carbon for high-performance capacitive desalination of brackish water
[J].
Enhanced capacitive deionization of saline water using N-doped rod-like porous carbon derived from dual-ligand metal–organic frameworks
[J].
Electrochemical capacitive behaviors of carbon/titania composite prepared by Tween 80-assisted sol-gel process for capacitive deionization
[J].
Fabrication of 3D flower-like MoS2/graphene composite as high-performance electrode for capacitive deionization
[J].
Insight into the significant contribution of intrinsic carbon defects for the high-performance capacitive desalination of brackish water
[J].
Enhancing capacitive deionization performance with charged structural polysaccharide electrode binders
[J].
Organic-inorganic hybrid binder enhances capacitive deionization performance of activated-carbon electrode
[J].
Carbon electrode with cross-linked and charged chitosan binder for enhanced capacitive deionization performance
[J].
A carbon electrode fabricated using a poly(vinylidene fluoride) binder controlled the Faradaic reaction of carbon powder
[J].
Poly(arylene ether sulfone) copolymers as binders for capacitive deionization activated carbon electrodes
[J].
Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries
[J].
Life cycle assessment of environmental impacts and energy demand for capacitive deionization technology
[J].
Rational design of a multifunctional binder for high-capacity silicon-based anodes
[J].
Cross-linked chitosan as an efficient binder for Si anode of Li-ion batteries
[J].
Tunnel structured manganese oxide nanowires as redox active electrodes for hybrid capacitive deionization
[J].
Versatile applications of capacitive deionization (CDI)-based technologies
[J].
Membrane-free hybrid capacitive deionization system based on redox reaction for high-efficiency NaCl removal
[J].
Use of soft electrodes in capacitive deionization of solutions
[J].
Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer
[J].
Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane
[J].
Preparation of ion exchanger layered electrodes for advanced membrane capacitive deionization (MCDI)
[J].
Capacitive deionization using a carbon electrode prepared with water-soluble poly(vinyl alcohol) binder
[J].
Aqueous-processed, high-capacity electrodes for membrane capacitive deionization
[J].
/
〈 | 〉 |