[1] |
Booth R C, Roland W B.Neural network-based combustion optimization reduces NOx emissions while improving performance//Proceedings of the American Power Conference[C].1998, 2:667-672
|
[2] |
Zhou Hao, Cen Kefa, Fan Jianren.Modeling and optimization of the NOx emission characteristics of a tangentially fired boiler with artificial neural networks[J].Energy, 2004, 29 (1):167-183
|
[3] |
Zheng Ligang, Zhou Hao, Wang Chunling, Cen Kefa. Combining support vector regression and ant colony optimization to reduce NOx emissions in coal-fired utility boilers[J].Energy & Fuels, 2008, 22 (2):1034-1040
|
[4] |
Shakil M, Moustafa Elshafei, Mohamed A Habib, Maleki F A.Soft sensor for NOx and O2 using dynamic neural networks[J].Computers and Electrical Engineering, 2009, 35 (8):578-586
|
[5] |
Gu Yanping, Zhao Wenjie, Wu Zhansong.Online adaptive least squares support vector machine and its application in utility boiler combustion optimization systems[J].Journal of Process Control, 2011, 21 (7):1040-1048
|
[6] |
Zheng Lingang, Zhou Hao, Cen Kefa, Wang Chunlin.A comparative study of optimization algorithms for low NOx combustion modification at a coal-fired utility boiler[J].Expert Systems with Applications, 2009, 36 (2):2780-2793
|
[7] |
Zhou Hao, Zheng Ligang, Cen Kefa.Computational intelligence approach for NOx emissions minimization in a coal-fired utility boiler[J].Energy Conversion and Management, 2010, 51 (3):580-586
|
[8] |
Wang Chunlin (王春林), Zhou Hao (周昊), Zhou Zhanghua (周樟华), Ling Zhongqian (凌忠钱), Li Guoneng (李国能), Cen Kefa (岑可法).Support vector machine modeling on the unburned carbon in fly ash[J].Proceedings of CSEE (中国电机工程学报), 2005, 25 (20):72-76
|
[9] |
Wang Peihong (王培红), Li Leilei (李磊磊), Chen Qiang (陈强), Dong Yihua (董益华).Research on application of artificial intelligence to combustion optimization in a coal-fired boiler[J].Proceedings of CSEE (中国电机工程学报), 2004, 24 (4):184-188
|
[10] |
Frohlich Holger, Abdreas Zell.Efficient parameter selection for support vector machines in classification and regression via model-based global optimization//IEEE International Joint Conference on Neural Networks[C].2005, 3:1431-1436
|
[11] |
Cherkassky Vladimir, Ma Y Q.Practical selection of SVM parameters and noise estimation for SVM regression[J].Neural Networks, 2004, 17 (1):113-126
|
[12] |
Arlot Sylvain, Alain Celisse.A survey of cross-validation procedures for model selection[J].Statistics Surveys, 2010, 4:40-79
|
[13] |
Jeffrey D K, Hedengren J D. A steady-state detection (SSD) algorithm to detect non-stationary drifts in process[J].Journal of Process Control, 2013, 23:326-331
|
[14] |
Jiang Taiwen, Chen Bingzhen, He Xiaorong.Application of steady-state detection method based on wavelet transform[J].Computers and Chemical Engineering, 2003, 27 (4):569-578
|
[15] |
Shahin M A, Maier H R, Jaksa M B.Data division for developing neural networks applied to geotechnical engineering[J].Journal of Computing in Civil Engineering, 2004, 18 (2):105-114
|
[16] |
Refaeilzadeh Payam, Lei T, Liu H.Cross-validation//Encyclopedia of Database Systems[C].US:Springer, 2009:532-538
|
[17] |
Chang C C, Lin C J.LIBSVM:a library for support vector machines[J].ACM Transactions on Intelligent Systems and Technology (TIST), 2011, 2 (3):27
|
[18] |
Cortes Corinna, Vladimir Vapnik.Support-vector networks[J].Machine Learning, 1995, 20 (3):273-297
|
[19] |
Christopher J C Burges.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery, 1998, 2 (2):121-167
|
[20] |
Hsu C W, Chang C C, Lin C J.A practical guide to support vector classification[EB/OL].[2013-08-05].http://www.csie.ntu.edu.tw/~cjlin/talks/freiburg.pdf
|