[1] |
GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3):183-191.
|
[2] |
ELIAS D C, NAIR R R, MOHIUDDIN T M G, et al. Control of graphene's properties by reversible hydrogenation:evidence for graphane[J]. Science, 2009, 323(5914):610-613.
|
[3] |
STANKOVICH S, DIKIN D A, DOMMETT G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100):282-286.
|
[4] |
NOVOSELOV K S A, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065):197-200.
|
[5] |
MURUGAN A V, MURALIGANTH T, MANTHIRAM A. Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy storage[J]. Chemistry of Materials, 2009, 21(21):5004-5006.
|
[6] |
ZARAGOZA-CONTRERAS E A, SALAVAGIONE H J. Synthesis of sulfonated graphene/polyaniline composites with improved electroactivity[J]. Carbon, 2012, 50(6):2235-2243.
|
[7] |
FAN Y, LIU J H, YANG C P, et al. Graphene-polyaniline composite film modified electrode for voltammetric determination of 4-aminophenol[J]. Sensors and Actuators B:Chemical, 2011, 157(2):669-674.
|
[8] |
MAO L, ZHANG K, CHAN H S O, et al. Surfactant-stabilized graphene/polyaniline nanofiber composites for high performance supercapacitor electrode[J]. Journal of Materials Chemistry, 2012, 22(1):80-85.
|
[9] |
LIU Y, DENG R, WANG Z, et al. Carboxyl-functionalized graphene oxide-polyaniline composite as a promising supercapacitor material[J]. Journal of Materials Chemistry, 2012, 22(27):13619-13624.
|
[10] |
FRYCZKOWSKI R, GORCZOWSKA M, SLUSARCZYK C, et al. The possibility of obtaining graphene/polymer composites from graphene oxide by a one step process[J]. Composites Science and Technology, 2013, 80:87-92.
|
[11] |
GU R, XU W Z, CHARPENTIER P A. Synthesis of polydopamine-coated graphene-polymer nanocomposites via RAFT polymerization[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2013, 51(18):3941-3949.
|
[12] |
XU Y, BAI H, LU G, et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets[J]. Journal of the American Chemical Society, 2008, 130(18):5856-5857.
|
[13] |
FAN X, PENG W, LI Y, et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions:a green route to graphene preparation[J]. Advanced Materials, 2008, 20(23):4490-4493.
|
[14] |
YAN J, ZHAO Z, PAN L. Growth and characterization of graphene by chemical reduction of graphene oxide in solution[J]. Physica Status Solidi (A), 2011, 208(10):2335-2338.
|
[15] |
JAMRÓZ D, MARÉCHAL Y. Hydration of sulfonated polyimide membranes(Ⅱ):Water uptake and hydration mechanisms of protonated homopolymer and block copolymers[J]. The Journal of Physical Chemistry B, 2005, 109(42):19664-19675.
|
[16] |
GUO H L, WANG X F, QIAN Q Y, et al. A green approach to the synthesis of graphene nanosheets[J]. ACS Nano, 2009, 3(9):2653-2659.
|
[17] |
STANKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7):1558-1565.
|
[18] |
LI H, LU T, PAN L, et al. Electrosorption behavior of graphene in NaCl solutions[J]. Journal of Materials Chemistry, 2009, 19(37):6773-6779.
|
[19] |
STANKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7):1558-1565.
|
[20] |
YANG H, LI F, SHAN C, et al. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement[J]. Journal of Materials Chemistry, 2009, 19(26):4632-4638.
|