[1] |
YIN S, DING S, XIE X, et al. Review on basic data-driven approaches for industrial process monitoring[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11):6418-6428.
|
[2] |
GE Z, SONG Z, GAO F. Review of recent research on data-based process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(10):3543-3562.
|
[3] |
ZHAO S, ZHANG J, XU Y. Performance monitoring of processes with multiple operating modes through multiple models[J]. Journal of Process Control, 2006, 16(7):763-772.
|
[4] |
ZHAO S, ZHANG J, XU Y. Monitoring of processes with multiple operation modes through multiple principle component analysis models[J]. Industrial & Engineering Chemistry Research, 2004, 43(22):7025-7035.
|
[5] |
宋冰, 马玉鑫, 方永锋,等. 基于LSNPE算法的化工过程故障检测[J]. 化工学报, 2014, 65(2):620-627. SONG B, MA Y X, FANG Y F, et al. Fault detection for chemical process based on LSNPE method[J]. CIESC Journal, 2014, 65(2):620-627.
|
[6] |
钟娜, 邓晓刚, 徐莹. 基于LECA的多工况过程故障检测方法[J].化工学报, 2015, 66(12):4929-4940. ZHONG N, DENG X G, XU Y. Fault detection method based on LECA for multimode process[J]. CIESC Journal, 2015, 66(12):4929-4940.
|
[7] |
DENG X, TIAN X. Multimode process fault detection using local neighborhood similarity analysis[J]. Chinese Journal of Chemical Engineering, 2014, 22(11/12):1260-1267.
|
[8] |
GE Z, SONG Z. Mixture Bayesian regularization method of PPCA for multimode process monitoring[J]. AIChE Journal, 2010, 56(11):2838-2849.
|
[9] |
卢春红, 熊伟丽, 顾晓峰. 基于贝叶斯推理的PKPCAM的非线性多模态过程故障检测与诊断方法[J]. 化工学报, 2014, 65(12):4866-4874. LU C H, XIONG W L, GU X F. Fault detection and diagnosis for nonlinear and multimode processes using Bayesian inference based PKPCAM approach[J]. CIESC Journal, 2014, 65(12):4866-4874.
|
[10] |
YU J. A new fault diagnosis method of multimode processes using Bayesian inference based Gaussian mixture contribution decomposition[J]. Engineering Applications of Artificial Intelligence, 2013, 26(1):456-466.
|
[11] |
ZHAO Z, LI Q, HUANG B, et al. Process monitoring based on factor analysis:probabilistic analysis of monitoring statistics in presence of both complete and incomplete measurements[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 142(15):18-27.
|
[12] |
JIANG Q, YAN X. Nonlinear plant-wide process monitoring using MI-spectral clustering and Bayesian inference-based multiblock KPCA[J]. Journal of Process Control, 2015, 32:38-50.
|
[13] |
TONG C, AHMET P, YAN X. An adaptive multimode process monitoring strategy based on mode clustering and mode unfolding[J]. Journal of Process Control, 2013, 23(10):1497-1507.
|
[14] |
XU X, XIE L, WANG S. Multimode process monitoring with PCA mixture model[J]. Computers and Electrical Engineering, 2014, 40(7):2101-2112.
|
[15] |
许仙珍, 谢磊, 王树青.基于PCA混合模型的多工况过程监控[J]. 化工学报, 2011, 62(3):743-752. XU X Z, XIE L, WANG S Q. Multimode process monitoring method based on PCA mixture model[J]. CIESC Journal, 2011, 62(3):743-752.
|
[16] |
孙贤昌, 田学民, 张妮. 一种基于GMM的多工况过程故障诊断方法[J]. 计算机与应用化学, 2014, 31(1):33-39. SUN X C, TIAN X M, ZHANG N. Multimode process fault diagnosis method based on GMM[J]. Computers and Applied Chemistry, 2014, 31(1):33-39.
|
[17] |
YUE H, QIN S. Reconstruction-based fault identification using a combined index[J]. Industrial & Engineering Chemistry Research, 2001, 40(20):4403-4414.
|
[18] |
ZHANG H, TIAN X, DENG X, et al. A local and global statistics pattern analysis method and its application to process fault identification[J]. Chinese Journal of Chemical Engineering, 2015, 23(11):1782-1792.
|
[19] |
DENG X, TIAN X. A new fault isolation method based on unified contribution plots[C]//The 30th Chinese Control Conference. 2011:4280-4285.
|
[20] |
ZHU X, RICHARD D B. Two-dimensional contribution map for fault identification[J]. IEEE Control System Magazine, 2014, 34(5):72-77.
|
[21] |
JIANG B, HUANG D, ZHU X, et al. Canonical variate analysis-based contributions for fault identification[J]. Journal of Process Control, 2015, 26(2):17-25.
|
[22] |
LEE J M, YOO C K, LEE I B. Statistical process monitoring with independent component analysis[J]. Journal of Process Control, 2004, 14(5):467-485.
|
[23] |
LEE T W, LEWICKI M. SEJNOWSKI T. ICA mixture models for unsupervised classification of non-Gaussian classes and automatic context switching in blind signal separation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10):1078-1089.
|
[24] |
PALMER J A, KREUTZ-DELGADO K, RAO B D. Newton method for the ICA mixture model[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. 2008:1805-1808.
|
[25] |
TONG C, AHMET P, YAN X. Improved ICA for process monitoring based on ensemble learning and Bayesian inference[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 135(15):141-149.
|
[26] |
BAUER M, COX J W, CAVENESS M H, et al. Finding the direction of disturbance propagation in a chemical process using transfer entropy[J]. IEEE Transactions on Control Systems Technology, 2007, 15(1):12-21.
|
[27] |
KRASKOV A, STOGBAUER H, GRASSBERGER P. Estimating mutual information[J]. Physical Review E, 2004, 69(6):1-15.
|
[28] |
VICENTE R, WIBRAL M. Directed Information Measures in Neuroscience[M]. Heidelberg:Springer Berlin, 2014:37-58.
|
[29] |
GE Z, SONG Z. Multimode process monitoring based on Bayesian method[J]. Journal of Chemometrics, 2009, 23(12):636-650.
|
[30] |
DENG X, TIAN X. Sparse kernel locality preserving projection and its application in nonlinear process fault detection[J]. Chinese Journal of Chemical Engineering, 2013, 21(3):163-170.
|