[1] |
CHEN Z. Bayesian filtering:from Kalman filters to particle filters, and beyond[J]. Statistics, 2003, 182(1):1-69.
|
[2] |
DAUM F. Nonlinear filters:beyond the Kalman filter[J]. IEEE Aerospace & Electronic Systems Magazine, 2005, 20(8):57-69.
|
[3] |
GOPALAKRISHNAN A, KAISARE N S, NARASIMHAN S. Incorporating delayed and infrequent measurements in extended Kalman filter based nonlinear state estimation[J]. Journal of Process Control, 2011, 21(1):119-129.
|
[4] |
KAI X, WEI C, LIU L. Robust extended Kalman filtering for nonlinear systems with stochastic uncertainties[J]. IEEE Transactions on Systems Man & Cybernetics Part A:Systems & Humans, 2010, 40(2):399-405.
|
[5] |
XI Y H, PENG H, KITAGAWA G, et al. The auxiliary iterated extended Kalman particle filter[J]. Optimization & Engineering, 2015, 16(2):387-407.
|
[6] |
WANG F, BALAKRISHNAN V. Robust Kalman filters for linear time-varying systems with stochastic parametric uncertainties[J]. IEEE Transactions on Signal Processing, 2002, 50(4):803-813.
|
[7] |
ROMANENKO A, CASTRO J. The unscented filter as an alternative to the EKF for nonlinear state estimation:a simulation case study[J]. Computers & Chemical Engineering, 2004, 28(3):347-355.
|
[8] |
GUO Y F, HUANG B. State estimation incorporating infrequent, delayed and integral measurements[J]. Automatica, 2015, 58(C):32-38.
|
[9] |
JWO D J, LAI C N. Unscented Kalman filter with nonlinear dynamic process modeling for GPS navigation[J]. GPS Solutions, 2008, 12(4):249-260.
|
[10] |
GORDON N J, SALMOND D J, SMITH A. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. Radar & Signal Processing IEE Proceedings F, 1993, 140(2):107-113.
|
[11] |
BAVDEKAR V A, GOPALUNI R B, SHAH S L. Evaluation of adaptive extended Kalman filter algorithms for state estimation in presence of model-plant mismatch[J]. IFAC Proceedings Volumes, 2013, 46(32):184-189.
|
[12] |
PANNOCCHIA G, RAWLINGS J B. Disturbance models for offset-free model-predictive control[J]. American Institute of Chemical Engineers, 2003, 49(2):426-437.
|
[13] |
OLIVIER L E, HUANG B, CRAIG I K. Dual particle filters for state and parameter estimation with application to a run-of-mine ore mill[J]. Journal of Process Control, 2012, 22(4):710-717.
|
[14] |
DENG J, XIE L, CHEN L, et al. Development and industrial application of soft sensors with on-line Bayesian model updating strategy[J]. Journal of Process Control, 2013, 23(3):317-325.
|
[15] |
SAVKIN A V, PETERSEN I R. Robust state estimation and model validation for discrete-time uncertain systems with a deterministic description of noise and uncertainty[J]. Automatica, 1998, 34(2):271-274.
|
[16] |
SCHWEPPE F. Recursive state estimation:unknown but bounded errors and system inputs[J]. IEEE Transactions on Automatic Control, 1968, 13(1):22-28.
|
[17] |
BALESTRINO A, CAITI A, CRISOSTOMI E. Particle filtering within a set-membership approach to state estimation[C]//14th Mediterranean Conference on Control and Automation, 2006:1-6.
|
[18] |
SHAO X G, ZHAO Z G, LIU F, et al. Ellipsoidal set based robust particle filtering for recursive Bayesian state estimation[C]//10th IEEE International Conference on Control and Automation (ICCA), 2013:568-573.
|
[19] |
SHAO X G, HUANG B, LEE J M, et al. Bayesian method for multirate data synthesis and model calibration[J]. American Institute of Chemical Engineers, 2011, 57(6):1514-1525.
|
[20] |
TAO C, MORRIS J, MARTIN E. Particle filters for state and parameter estimation in batch processes[J]. Journal of Process Control, 2005, 15(6):665-673.
|
[21] |
LIU J S, CHEN R. Sequential Monte Carlo methods for dynamic systems[J]. Journal of the American Statistical Association, 2014, 93(443):1032-1044.
|
[22] |
KIM S, WON S. A particle filter approach to robust state estimation for a class of nonlinear systems with stochastic parameter uncertainty[J]. IEICE Transactions on Fundamentals of Electronics, Communications & Computer Sciences, 2011, 94-A(5):1194-1200.
|
[23] |
MOORE R E. Methods and Applications of Interval Analysis[M]. Philadelphia:Siam, 1979:56-57
|
[24] |
PRYCE J D, CORLISS G F. Interval arithmetic with containment sets[J]. Computing, 2006, 78(3):251-276.
|
[25] |
SCHOLTE E, CAMPBELL M E. A nonlinear set-membership filter for on-line applications[J]. International Journal of Robust & Nonlinear Control, 2003, 13(15):1337-1358.
|
[26] |
SHAO X, HUANG B, LEE J M. Constrained Bayesian state estimation-a comparative study and a new particle filter based approach[J]. Journal of Process Control, 2010, 20(2):143-157.
|
[27] |
ZHAO Z G, HUANG B, LIU F. Constrained particle filtering methods for state estimation of nonlinear process[J]. American Institute of Chemical Engineers, 2014, 60(6):2072-2082.
|
[28] |
ZHAO Z G, SHAO X G, HUANG B, et al. On-line estimation of glucose and biomass concentration in batch fermentation process using particle filter with constraint[J]. Asia-Pacific Journal of Chemical Engineering, 2012, 7(5):678-686.
|
[29] |
ALAMO T, AVO J M, REDONDO M J, et al. A set-membership state estimation algorithm based on DC programming[J]. Automatica, 2008, 44(1):216-224.
|
[30] |
GOPALUNI R B. A particle filter approach to identification of nonlinear processes under missing observations[J]. The Canadian Journal of Chemical Engineering, 2008, 86(6):1081-1092.data synthesis and model calibration[J]. American Institute Of Chemical Engineers, 2011, 57(6):1514-1525.
|
[20] |
TAO C, MORRIS J, MARTIN E. Particle filters for state and parameter estimation in batch processes[J]. Journal of Process Control, 2005, 15(6):665-673.
|
[21] |
LIU J S, CHEN R. Sequential Monte Carlo Methods for Dynamic Systems[J]. Journal of the American Statistical Association, 2014, 93(443):1032-1044.
|
[22] |
KIM S, WON S. A Particle Filter Approach to Robust State Estimation for a Class of Nonlinear Systems with Stochastic Parameter Uncertainty[J]. IEICE Transactions on Fundamentals of Electronics, Communications & Computer Sciences, 2011, 94-A(5):1194-1200.
|
[23] |
MOORE R E. Methods and applications of interval analysis[M]. Philadelphia:Siam, 1979:56-57
|
[24] |
PRYCE J D, CORLISS G F. Interval arithmetic with containment sets[J]. Computing, 2006, 78(3):251-276.
|
[25] |
SCHOLTE E, CAMPBELL M E. A nonlinear set-membership filter for on-line applications[J]. International Journal of Robust & Nonlinear Control, 2003, 13(15):1337-1358.
|
[26] |
SHAO X, HUANG B, LEE J M. Constrained Bayesian state estimation-A comparative study and a new particle filter based approach[J]. Journal of Process Control, 2010, 20(2):143-157.
|
[27] |
ZHAO Z G, HUANG B, LIU F. Constrained particle filtering methods for state estimation of nonlinear process[J]. American Institute Of Chemical Engineers, 2014, 60(6):2072-2082.
|
[28] |
ZHAO Z G, SHAO X G, HUANG B, et al. On-line estimation of glucose and biomass concentration in batch fermentation process using particle filter with constraint[J]. Asia-Pacific Journal of Chemical Engineering, 2012, 7(5):678-686.
|
[29] |
ALAMO T, BRAVO J M, REDONDO M J, et al. A set-membership state estimation algorithm based on DC programming[J]. Automatica, 2008, 44(1):216-224.
|
[30] |
BAVDEKAR V A, GOPALUNI R B, SHAH S L. Evaluation of Adaptive Extended Kalman Filter Algorithms for State Estimation in Presence of Model-Plant Mismatch[J]. IFAC Proceedings Volumes, 2013, 46(32):184-189.
|
[31] |
GOPALUNI R B. A particle filter approach to identification of nonlinear processes under missing observations[J]. The Canadian Journal of Chemical Engineering, 2008, 86(6):1081-1092.
|