1 Marquez, F.J., Nishio, N., Nagai, S., Sasaki, K., “Enhancement of biomass and pigment production during growth of Spirulina platensis in mixotrophic culture”, J. Chem. Technol. Biotechnol., 62, 159-164 (1995). 2 Chen, F., “High cell density culture of microalgae in heterotrophic growth”, Trends Biotechnol., 14, 421-426 (1996). 3 Chen, F., Zhang, Y., “High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system”, Enzyme Microb. Technol., 20, 221-224 (1997). 4 Droop, M.R., “Heterotrophy of carbon”, In: Algal Physiology and Biochemistry, University of California Press, Berkeley and Los Angeles, 530-559 (1974). 5 Smith, A.J., “Modes of cyanobacterial carbon metabolism”, In: The Biology of Cyanobacteria, Blackwell Scientific Publications, Oxford, London, Edinburgh, Boston and Melbourne, 47-85 (1982). 6 Tuchman, N.C., “The role of heterotrophy in algae”, In: Algal Ecology, Academic Press, San Diego, 299-319 (1996). 7 Lee, Y.K., Ding, S.Y., Hoe, C.H., Low, C.S., “Mixotrophic growth of Chlorella sorokiniana in outdoor enclosed photobioreactor”, J. Appl. Phycol., 8, 163-169 (1996). 8 Martinez, M.E., Camacho, F., Jimenez, J.M., Espinola, J.B., “Influence of light intensity on the kinetic and yield parameters of Chlorella pyrenoidosa mixotrophic growth”, Process Biochem., 32, 93-98 (1997). 9 Ip, P.F., Wong, K.H., Chen, F., “Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture”, Process Biochem., 39, 1761-1766 (2004). 10 Liang, Y., Sarkany, N., Cui, Y., “Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions”, Biotechnol. Lett., 31, 1043-1049 (2009). 11 Kobayashi, M., Kakizono, T., Yamaguchi, K., Nishio, N., Nagai, S., “Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions”, J. Ferment. Bioeng., 74,17-20 (1992). 12 Zhang, X.W., Gong, X.D., Chen, F., “Kinetic models for astaxanthin production by high cell density mixotrophic culture of the microalga Haematococcus pluvialis”, J. Ind. Microbiol. Biotechnol., 23,691-696 (1999). 13 Jeon, Y.C., Cho, C.W., Yun, Y.S., “Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis”, Enzyme Microb. Technol., 39, 490-495 (2006). 14 Shamala, T.R., Drawert, F., Leupold, G., “Studies on Scenedesmus acutus growth. I. Effect of autotrophic and mixotrophic conditions on the growth of Scenedesmus acutus”, Biotechnol. Bioeng., 24,1287-1299 (1982). 15 Combres, C., Laliberte, G., Reyssac, J.S., Delanoue, J., “Effect of acetate on growth and ammonium uptake in the microalga Scenedesmus obliquus”, Physiol. Plant., 91, 729-734 (1994). 16 Xie, J., Zhang, Y., Li, Y., Wang, Y., “Mixotrophic cultivation of Platymonas subcordiformis”, J. Appl. Phycol., 13, 343-347 (2001). 17 Rippka, R., “Photoheterotrophy and chemoheterotrophy among unicellular blue-green algae”, Arch. Microbiol., 87, 93-98 (1972). 18 Stal, L.J., Moezelaar, R., “Fermentation in cyanobacteria”, FEMS Microbiol. Rev., 21, 179-211 (1997). 19 Marquez, F.J., Sasaki, K., Kakizono, T., Nishio, N., Nagai, S., “Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions”, J. Ferment. Bioeng., 76, 408-410 (1993). 20 Chen, F., Zhang, Y., Guo, S., “Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture”, Biotechnol. Lett.,18, 603-608 (1996). 21 Chen, T., Zheng, W., Yang, F., Bai, Y., Wong, Y.S., “Mixotrophic culture of high selenium-enriched Spirulina platensis on acetate and the enhanced production of photosynthetic pigments”, Enzyme Microb. Technol., 39, 103-107 (2006). 22 Wang, Y., Li, Y., Shi, D., Shen, G., Ru, B., Zhang, S., “Characteristics of mixotrophic growth of Synechocystis sp. in an enclosed photobioreactor”, Biotechnol. Lett., 24, 1593-1597 (2002). 23 Yu, H., Jia, S., Dai, Y., “Growth characteristics of the cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation”, J. Appl. Phycol., 21, 127-133 (2009). 24 Haury, J.F., Spiller, H., “Fructose uptake and influence on growth of and nitrogen fixation by Anabaena variabilis”, J. Bacteriol., 147,227-235 (1981). 25 Rozen, A., Arad, H., Schonfeld, M., Tel-Or, E., “Fructose supports glycogen accumulation, heterocysts differentiation, N2 fixation and growth of the isolated cyanobiont Anabaena azollae”, Arch. Microbiol., 145, 187-190 (1986). 26 Rozen, A., Schonfeld, M., Tel-Or, E., “Fructose-enhanced development and growth of the N2 -fixing cyanobiont Anabaena azollae”, Z. Naturforsch., 43c, 408-412 (1988). 27 Valiente, E.F., Nieva, M., Avendano, M.C., Maeso, E.S., “Uptake and utilization of fructose by Anabaena variabilis ATCC 29413. Effect on respiration and photosynthesis”, Plant Cell Physiol., 33,307-313 (1992). 28 Vonshak, A., Cheung, S.M., Chen, F., “Mixotrophic growth modifies the response of Spirulina (Arthrospira) platensis (cyanobacteria) cells to light”, J. Phycol., 36, 675-679 (2000). 29 Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M., Stanier, R.Y., “Generic assignments, strain histories and properties of pure cultures of cyanobacteria”, J. Gen. Microbiol., 111, 1-61 (1979). 30 Bryant, D.A., The Molecular Biology of Cyanobacteria, Kluwer Academic Publishers, The Netherlands (1994). 31 Kaneko, T., Nakamura, Y., Wolk, C.P., Kuritz, T., Sasamoto, S., Watanabe, A., Iriguchi, M., Ishikawa, A., Kawashima, K., Kimura, T., Kishida, Y., Kohara, M., Matsumoto, M., Matsuno, A., Muraki, A., Nakazaki, N., Shimpo, S., Sugimoto, M., Takazawa, M., Yamada, M., Yasuda, M., Tabata, S., “Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC7120”, DNA Res., 8, 227-253 (2001). 32 Archer, S.D., McDonald, K.A., Jackman, A.P., “Effect of light irradiance on the production of sulfolipids from Anabaena 7120 in a fed-batch photobioreactor”, Appl. Biochem. Biotechnol., 67, 139-152 (1997). 33 Morales, E., Rodriguez, M., Garcia, D., Loreto, C., Marco, E., “Effect of pH and CO2 on growth, pigments and exopolysaccharides production from cyanobacteria Anabaena sp. PCC 7120”, Interciencia, 27, 373-378 (2002). 34 Ren, L., Shi, D.J., Dai, J.X., Ru, B.G., “Expression of the mouse metallothionein-I gene conferring cadmium resistance in a transgenic cyanobacterium”, FEMS Microbiol. Lett., 158, 127-132 (1998). 35 Liu, F.L., Zhang, H.B., Shi, D.J., Shang, Z.D., Lin, C., Shao, N., Peng, G.H., Zhang, X.Y., Zhang, H.X., Wu, J.Y., Wang, J., Xu, X.D., Jiang, Y.H., Zhong, Z.P., Zhao, S.J., Wu, M., Zeng, C.K., “Construction of shuttle, expression vector of human tumor necrosis factor alpha (hTNF-α) gene and its expression in a cyanobacterium, Anabaena sp. PCC7120”, Sci. China (Series C), 42, 25-33 (1999). 36 Castenholz, R.W., “Culturing methods for cyanobacteria”, In: Methods in Enzymology, Vol. 167, Cyanobacteria, Academic Press, San Diego, 68-93 (1988). 37 Williams, J.G.K., “Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803”, In: Methods in Enzymology, Vol. 167, Cyanobacteria, Academic Press, San Diego, 766-778 (1988). 38 Slein, M.W., Cori, G.T., Cori, C.F., “A comparative study of hexokinase from yeast and animal tissues”, J. Biol. Chem., 186,763-780 (1950). 39 Pearce, J., Carr, N.G., “The incorporation and metabolism of glucose by Anabaena variabilis”, J. Gen. Microbiol., 54, 451-462 (1969). 40 Markwell, M.A.K., Haas, S.M., Bieber, L.L., Tolbert, N.E., “A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples”, Anal. Biochem., 87,206-210 (1978). 41 Hirata, S., Taya, M., Tone, S., “Characterization of Chlorella cell cultures in batch and continuous operations under a photoautotrophic condition”, J. Chem. Eng. Japan, 29, 953-959 (1996). 42 Scherer, S., “Do photosynthetic and respiratory electron transport chains share redox proteins”, Trends Biochem. Sci., 15, 458-462 (1990). 43 Knowles, V.L., Plaxton, W.C., “From genome to enzyme: analysis of key glycolytic and oxidative pentose-phosphate pathway enzymes in the cyanobacterium Synechocystis sp. PCC 6803”, Plant Cell Physiol., 44, 758-763 (2003). 44 Sundaram, S., Karakaya, H., Scanlan, D.J., Mann, N.H., “Multiple oligomeric forms of glucose-6-phosphate dehydrogenase in cyanobacteria and the role of OpcA in the assembly process”, Microbiology, 144, 1549-1556 (1998). |