化工学报 ›› 2021, Vol. 72 ›› Issue (12): 6380-6387.DOI: 10.11949/0438-1157.20211076
收稿日期:
2021-08-02
修回日期:
2021-10-04
出版日期:
2021-12-05
发布日期:
2021-12-22
通讯作者:
金永成,向兰
作者简介:
崔声睿(1996—),男,硕士研究生,基金资助:
Shengrui CUI1(),Lintao DONG1,Yongcheng JIN1(
),Lan XIANG2(
)
Received:
2021-08-02
Revised:
2021-10-04
Online:
2021-12-05
Published:
2021-12-22
Contact:
Yongcheng JIN,Lan XIANG
摘要:
高性能、高安全储能电池的迫切需求加速了橄榄石型高电压正极材料的研究步伐。为了改善高电压磷酸钴锂(LiCoPO4)的综合电化学性能,采用溶剂热法研究了溶剂比、过渡元素(Fe、Mn)单掺杂和双掺杂(掺杂元素总量占10%)对正极材料形貌、尺寸、反位缺陷和电化学性能的影响。结果表明,当溶剂比为2.3时,未掺杂LiCoPO4在0.1C下表现出163.1 mAh·g-1的最高理论比容量;双掺杂LiCo0.9Mn0.05Fe0.05PO4正极材料具有突出的循环性能,在0.5C电流密度下,循环100圈后的容量保持率为78.9%,循环稳定性得到明显改善。
中图分类号:
崔声睿, 董林涛, 金永成, 向兰. 高电压磷酸钴锂正极材料性能调控研究[J]. 化工学报, 2021, 72(12): 6380-6387.
Shengrui CUI, Lintao DONG, Yongcheng JIN, Lan XIANG. Studies on the performance of high voltage LiCoPO4 cathode materials[J]. CIESC Journal, 2021, 72(12): 6380-6387.
样品 | M2 | M1 | 晶胞参数 | ||||
---|---|---|---|---|---|---|---|
Co1 | Li2 | Li1 | Co2 | a | b | c | |
LCP-2.3 | 0.956 | 0.044 | 0.956 | 0.044 | 10.2088 | 5.9273 | 4.7039 |
LCFP-2.3 | 0.871 | 0.029 | 0.971 | 0.029 | 10.2113 | 5.9289 | 4.7038 |
LCFP-3.0 | 0.875 | 0.025 | 0.975 | 0.025 | 10.2142 | 5.9326 | 4.7041 |
LCMP-2.3 | 0.880 | 0.020 | 0.980 | 0.020 | 10.2317 | 5.9453 | 4.7068 |
LCMP-3.0 | 0.879 | 0.021 | 0.979 | 0.016 | 10.2299 | 5.9447 | 4.7071 |
LCMFP-2.3 | 0.882 | 0.018 | 0.982 | 0.018 | 10.2203 | 5.9351 | 4.7052 |
表1 LiCo1-x-yMnxFeyPO4/C复合正极材料的晶胞参数
Table 1 The lattice parameters of LiCo1-x-yMnxFeyPO4/C composite material
样品 | M2 | M1 | 晶胞参数 | ||||
---|---|---|---|---|---|---|---|
Co1 | Li2 | Li1 | Co2 | a | b | c | |
LCP-2.3 | 0.956 | 0.044 | 0.956 | 0.044 | 10.2088 | 5.9273 | 4.7039 |
LCFP-2.3 | 0.871 | 0.029 | 0.971 | 0.029 | 10.2113 | 5.9289 | 4.7038 |
LCFP-3.0 | 0.875 | 0.025 | 0.975 | 0.025 | 10.2142 | 5.9326 | 4.7041 |
LCMP-2.3 | 0.880 | 0.020 | 0.980 | 0.020 | 10.2317 | 5.9453 | 4.7068 |
LCMP-3.0 | 0.879 | 0.021 | 0.979 | 0.016 | 10.2299 | 5.9447 | 4.7071 |
LCMFP-2.3 | 0.882 | 0.018 | 0.982 | 0.018 | 10.2203 | 5.9351 | 4.7052 |
1 | Ikuhara Y H, Gao X, Fisher C A J, et al. Atomic level changes during capacity fade in highly oriented thin films of cathode material LiCoPO4[J]. Journal of Materials Chemistry A, 2017, 5(19): 9329-9338. |
2 | Satyavani T V S L, Srinivas Kumar A, Subba Rao P S V. Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: a review[J]. Engineering Science and Technology, an International Journal, 2016, 19(1): 178-188. |
3 | Yu F, Zhang L L, Li Y C, et al. Mechanism studies of LiFePO4 cathode material: lithiation/delithiation process, electrochemical modification and synthetic reaction[J]. RSC Adv., 2014, 4(97): 54576-54602. |
4 | Eftekhari A. LiFePO4/C nanocomposites for lithium-ion batteries[J]. Journal of Power Sources, 2017, 343: 395-411. |
5 | Aravindan V, Gnanaraj J, Lee Y S, et al. LiMnPO4—a next generation cathode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(11): 3518. |
6 | Padhi A K, Nanjundaswamy K S, Masquelier C, et al. Effect of structure on the Fe3+ / Fe2+ redox couple in iron phosphates[J]. Journal of the Electrochemical Society, 1997, 144(5): 1609-1613. |
7 | Bramnik N N, Nikolowski K, Baehtz C, et al. Phase transitions occurring upon lithium insertion-extraction of LiCoPO4[J]. Chemistry of Materials, 2007, 19(4): 908-915. |
8 | Hu M, Pang X L, Zhou Z. Recent progress in high-voltage lithium ion batteries[J]. Journal of Power Sources, 2013, 237: 229-242. |
9 | Örnek A. An impressive approach to solving the ongoing stability problems of LiCoPO4 cathode: nickel oxide surface modification with excellent core-shell principle[J]. Journal of Power Sources, 2017, 356: 1-11. |
10 | Wu J Y, Tsai C J. Qualitative modeling of the electrolyte oxidation in long-term cycling of LiCoPO4 for high-voltage lithium-ion batteries[J]. Electrochimica Acta, 2021, 368: 137585. |
11 | Amine K. Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries[J]. Electrochemical and Solid-State Letters, 1999, 3(4): 178. |
12 | Ludwig J, Marino C, Haering D, et al. Facile, ethylene glycol-promoted microwave-assisted solvothermal synthesis of high-performance LiCoPO4 as a high-voltage cathode material for lithium-ion batteries[J]. RSC Advances, 2016, 6(86): 82984-82994. |
13 | Zambonino M C, Quizhpe E M, Jaramillo F E, et al. Green synthesis of selenium and tellurium nanoparticles: current trends, biological properties and biomedical applications[J]. International Journal of Molecular Sciences, 2021, 22(3): 989. |
14 | Shanmukaraj D, Murugan R. Synthesis and characterization of LiNiyCo1-yPO4 (y=0—1) cathode materials for lithium secondary batteries[J]. Ionics, 2004, 10(1/2): 88-92. |
15 | Truong Q D, Devaraju M K, Sasaki Y, et al. Relocation of cobalt ions in electrochemically delithiated LiCoPO4 cathode materials[J]. Chemistry of Materials, 2014, 26(9): 2770-2773. |
16 | Boulineau A, Gutel T. Revealing electrochemically induced antisite defects in LiCoPO4: evolution upon cycling[J]. Chemistry of Materials, 2015, 27(3): 802-807. |
17 | Wolfenstine J, Lee U, Poese B, et al. Effect of oxygen partial pressure on the discharge capacity of LiCoPO4[J]. Journal of Power Sources, 2005, 144(1): 226-230. |
18 | Xie J, Imanishi N, Zhang T, et al. Li-ion diffusion kinetics in LiCoPO4 thin films deposited on NASICON-type glass ceramic electrolytes by magnetron sputtering[J]. Journal of Power Sources, 2009, 192(2): 689-692. |
19 | Wu X C, Meledina M, Tempel H, et al. Morphology-controllable synthesis of LiCoPO4 and its influence on electrochemical performance for high-voltage lithium ion batteries[J]. Journal of Power Sources, 2020, 450: 227726. |
20 | Li G H, Azuma H, Tohda M. LiMnPO4 as the cathode for lithium batteries[J]. Electrochemical and Solid-State Letters, 2002, 5(6): A135. |
21 | Maeyoshi Y, Miyamoto S, Noda Y, et al. Effect of organic additives on characteristics of carbon-coated LiCoPO4 synthesized by hydrothermal method[J]. Journal of Power Sources, 2017, 337: 92-99. |
22 | Sreedeep S, Aravindan V. Fabrication of 4.7 V class “rocking-chair” type Li-ion cells with carbon-coated LiCoPO4 as cathode and graphite anode[J]. Materials Letters, 2021, 291: 129609. |
23 | Markevich E, Sharabi R, Haik O, et al. Raman spectroscopy of carbon-coated LiCoPO4 and LiFePO4 olivines[J]. Journal of Power Sources, 2011, 196(15): 6433-6439. |
24 | Allen J L, Jow T R, Wolfenstine J. Improved cycle life of Fe-substituted LiCoPO4[J]. Journal of Power Sources, 2011, 196(20): 8656-8661. |
25 | Wolfenstine J. Electrical conductivity of doped LiCoPO4[J]. Journal of Power Sources, 2006, 158(2): 1431-1435. |
26 | Wu X C, Lin Y M, Ji Y, et al. Corrrection to insights into the enhanced catalytic activity of Fe-doped LiCoPO4 for the oxygen evolution reaction[J]. ACS Applied Energy Materials, 2020, 3(4): 4088. |
27 | Wu B R, Xu H L, Mu D B, et al. Controlled solvothermal synthesis and electrochemical performance of LiCoPO4 submicron single crystals as a cathode material for lithium ion batteries[J]. Journal of Power Sources, 2016, 304: 181-188. |
28 | Kreder K J, Assat G, Manthiram A. Aliovalent substitution of V3+ for Co2+ in LiCoPO4 by a low-temperature microwave-assisted solvothermal process[J]. Chemistry of Materials, 2016, 28(6): 1847-1853. |
29 | Wang Y M, Wang Y J, Liu X Y, et al. Solvothermal synthesis of LiFe1/3Mn1/3Co1/3PO4 solid solution as lithium storage cathode materials[J]. RSC Advances, 2017, 7(24): 14354-14359. |
30 | Wu X C, Meledina M, Barthel J, et al. Investigation of the Li-Co antisite exchange in Fe-substituted LiCoPO4 cathode for high-voltage lithium ion batteries[J]. Energy Storage Materials, 2019, 22: 138-146. |
[1] | 罗军, 王林, 黄琴, 任思颖, 于旭东, 曾英. CsCl-PEG8000-H2O三元体系288.2、298.2、308.2 K相平衡测定[J]. 化工学报, 2021, 72(6): 3140-3148. |
[2] | 于旭东, 黄琴, 王林, 李茂兰, 郑洪, 曾英. KCl-PEG4000-H2O三元体系288、298、308 K相平衡测定及计算[J]. 化工学报, 2019, 70(3): 830-839. |
[3] | 赫帅, 郭凤, 康国俊, 余剑, 任雪峰, 许光文. 络合-溶剂热法制备钯基催化剂及其催化氧化间二甲苯性能[J]. 化工学报, 2019, 70(3): 937-943. |
[4] | 欧阳博, 孔明, 钱超, 陈新志. 二苯基亚砜在有机溶剂中的溶解度测定和拟合[J]. 化工学报, 2018, 69(4): 1307-1314. |
[5] | 陈启宇, 王青跃. 离子液体混合溶剂预处理后孟宗竹的热解[J]. 化工学报, 2015, 66(5): 1874-1882. |
[6] | 严生虎,康 琳,张 跃,刘建武,沈介发. 对甲基苯基氯化镁的合成工艺改进[J]. 化工进展, 2013, 32(12): 2977-2981. |
[7] | 张斌, 王鑫, 黄琪惠, 姬广斌. 有机物原位包裹Co微米球的溶剂热制备[J]. 化工学报, 2012, 63(2): 634-639. |
[8] | 吕 微,蒋剑春,徐俊明. 从脂肪酸的尿素包合法固相物中回收尿素的工艺[J]. 化工进展, 2012, 31(01 ): 201-207. |
[9] | 张志刚,刘雷,李文秀,陈立峰. 萃取精馏分离苯-环己烷三元混合溶剂的效应 [J]. CIESC Journal, 2011, 62(9): 2541-2545. |
[10] | 李广慈,柳云骐,刘 迪,刘理华,刘晨光. 不同形貌纳米薄水铝石的水/溶剂热合成及其催化应用 [J]. CIESC Journal, 2010, 29(7): 1215-. |
[11] | 戈 军1,2,郭龙德1,郭智慧1,石 斌1,张建芳1. 溶剂与溶胀促进剂对神华煤溶胀行为的影响 [J]. CIESC Journal, 2010, 29(10): 1885-. |
[12] | 孙仁义; 孙茜. 不挥发溶质对混合溶剂沸点及蒸气压的影响 [J]. CIESC Journal, 2002, 53(9): 885-891. |
[13] | 赵杰; 刘昆元; 赵传钧. 十二烷基苯磺酸钠-乙醇-水体系固液相平衡 [J]. CIESC Journal, 2002, 53(3): 326-329. |
[14] | 施凯,陈秉铨,刘成岑. 不溶性硫生产新工艺的研究 [J]. CIESC Journal, 1996, 47(2): 254-258. |
[15] | 鲍坚斌,陈庚华,韩世钧. 气提法测定多组分混合溶剂体系的无限稀释活度系数 [J]. CIESC Journal, 1993, 44(5): 542-548. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 299
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 490
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||