化工学报 ›› 2021, Vol. 72 ›› Issue (12): 6176-6187.DOI: 10.11949/0438-1157.20211117
收稿日期:
2021-08-09
修回日期:
2021-09-30
出版日期:
2021-12-05
发布日期:
2021-12-22
通讯作者:
马光辉
作者简介:
韦祎(1982—),女,博士,副研究员,基金资助:
Received:
2021-08-09
Revised:
2021-09-30
Online:
2021-12-05
Published:
2021-12-22
Contact:
Guanghui MA
摘要:
微球制剂是新型的给药系统,其粒径均一性非常重要,不仅影响产品批次间制备重复性,还会影响应用效果。因此,尺寸均一、可控的微球产品是医药制剂的关键核心。本团队成功发展了微孔膜乳化技术,20年来在粒径均一、尺寸可控微球的制备和应用方面进行了系统性研究。均一的微球制剂的优势有:绿色环保、降低成本,利于规模放大,批次间重复性好,利于研究构效关系。本团队制备的均一载药微球已成功应用于缓释制剂、疫苗递送及恶性肿瘤治疗中。
中图分类号:
韦祎, 马光辉. 尺寸均一微球制剂的研究进展[J]. 化工学报, 2021, 72(12): 6176-6187.
Yi WEI, Guanghui MA. Research progress of microsphere formulations with narrow size distribution[J]. CIESC Journal, 2021, 72(12): 6176-6187.
1 | Johnson O L, Cleland J L, Lee H J, et al. A month–long effect from a single injection of microencapsulated human growth hormone[J]. Nature Medicine, 1996, 2(7): 795-799. |
2 | Anderson J M, Shive M S. Biodegradation and biocompatibility of PLA and PLGA microspheres[J]. Advanced Drug Delivery Reviews, 1997, 28(1): 5-24. |
3 | 陈庆华, 瞿文. 多肽、蛋白质药物的微球给药系统研究进展[J]. 国外医学药学分册, 1997, 24(3): 129-133. |
Chen Q H, Qu W. Progress of microsphere drug delivery system for peptide and protein drugs [J]. Foreign Medical Sciences Section on Pharmacy, 1997, 24(3): 129-133. | |
4 | 马光辉. 高分子微球用于蛋白质药物给药系统: 策略、制备及应用[C]//2012年全国高分子材料科学与工程研讨会论文集. 武汉, 2012: 518-519. |
Ma G H. Application of polymer microspheres in protein drug delivery system: strategy, preparation and application [C]// Proceedings of 2012 National Symposium on Polymer Materials Science and Engineering.Wuhan, 2012: 518-519. | |
5 | 包文超, 周加祥, 罗九甫, 等. 蛋白质/多肽类药物的可降解缓释微球制备方法和应用相关问题[J]. 化学世界, 2005, 46(1): 50-53. |
Bao W C, Zhou J X, Luo J F, et al. Biodegradable microspheres: a review[J]. Chemical World, 2005, 46(1): 50-53. | |
6 | Xia Y J, Ribeiro P F, Pack D W. Controlled protein release from monodisperse biodegradable double-wall microspheres of controllable shell thickness[J]. Journal of Controlled Release, 2013, 172(3): 707-714. |
7 | Yang Y Y, Chen Q L, Lin J Y, et al. Recent advance in polymer based microspheric systems for controlled protein and peptide delivery[J]. Current Medicinal Chemistry, 2019, 26(13): 2285-2296. |
8 | Liu B, Dong Q, Wang M, et al. Preparation, characterization, and pharmacodynamics of exenatide-loaded poly(DL-lactic-co-glycolic acid) microspheres[J]. Chemical & Pharmaceutical Bulletin, 2010, 58(11): 1474-1479. |
9 | Berkland C, King M, Cox A, et al. Precise control of PLG microsphere size provides enhanced control of drug release rate[J]. Journal of Controlled Release, 2002, 82(1): 137-147. |
10 | Rhee Y S, Sohn M, Woo B H, et al. Sustained-release delivery of octreotide from biodegradable polymeric microspheres[J]. AAPS PharmSciTech, 2011, 12(4): 1293-1301. |
11 | Ma G H. Microencapsulation of protein drugs for drug delivery: strategy, preparation, and applications[J]. Journal of Controlled Release, 2014, 193: 324-340. |
12 | Li X, Wei Y, Lv P, et al. Preparation of ropivacaine loaded PLGA microspheres as controlled-release system with narrow size distribution and high loading efficiency[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 562: 237-246. |
13 | Wei Y, Wang Y X, Wang W, et al. mPEG-PLA microspheres with narrow size distribution increase the controlled release effect of recombinant human growth hormone[J]. Journal of Materials Chemistry, 2011, 21(34): 12691. |
14 | Wei Y, Wang Y, Kang A, et al. A novel sustained-release formulation of recombinant human growth hormone and its pharmacokinetic, pharmacodynamic and safety profiles[J]. Molecular Pharmaceutics, 2012, 9(7): 2039-2048. |
15 | Niwa T, Takeuchi H, Hino T, et al. In vitro drug release behavior of D, L-lactide/glycolide copolymer (PLGA) nanospheres with nafarelin acetate prepared by a novel spontaneous emulsification solvent diffusion method[J]. Journal of Pharmaceutical Sciences, 1994, 83(5): 727-732. |
16 | Rosenblum D, Joshi N, Tao W, et al. Progress and challenges towards targeted delivery of cancer therapeutics[J]. Nature Communications, 2018, 9(1): 1410. |
17 | Zhu X J, Yu Z J, Feng L B, et al. Chitosan-based nanoparticle co-delivery of docetaxel and curcumin ameliorates anti-tumor chemoimmunotherapy in lung cancer[J]. Carbohydrate Polymers, 2021, 268: 118237. |
18 | Scheeren L E, Nogueira-Librelotto D R, Mathes D, et al. Multifunctional PLGA nanoparticles combining transferrin-targetability and pH-stimuli sensitivity enhanced doxorubicin intracellular delivery and in vitro antineoplastic activity in MDR tumor cells[J]. Toxicology in Vitro, 2021, 75: 105192. |
19 | Matsumoto S, Nakata K, Sagara A, et al. Efficient pre-treatment for pancreatic cancer using chloroquine-loaded nanoparticles targeting pancreatic stellate cells[J]. Oncology Letters, 2021, 22(2): 633. |
20 | Almoustafa H A, Alshawsh M A, Chik Z. Targeted polymeric nanoparticle for anthracycline delivery in hypoxia-induced drug resistance in metastatic breast cancer cells[J]. Anti-Cancer Drugs, 2021, 32(7): 745-754. |
21 | Tansık G, Yakar A, Gündüz U. Tailoring magnetic PLGA nanoparticles suitable for doxorubicin delivery[J]. Journal of Nanoparticle Research, 2013, 16(1): 1-13. |
22 | Wu P, Zhou Q, Zhu H, et al. Enhanced antitumor efficacy in colon cancer using EGF functionalized PLGA nanoparticles loaded with 5-fluorouracil and perfluorocarbon[J]. BMC Cancer, 2020, 20(1): 354. |
23 | Guo T, Li X K, Lin M, et al. Mucosal adjuvant activity of chitosan encapsulated nanoparticles as Helicobacter pylori epitope vaccine carrier[J]. Nanoscience and Nanotechnology Letters, 2016, 8(12): 1106-1111. |
24 | Xia Y F, Wu J, Wei W, et al. Exploiting the pliability and lateral mobility of Pickering emulsion for enhanced vaccination[J]. Nature Materials, 2018, 17(2): 187-194. |
25 | Gu P, Wusiman A, Zhang Y, et al. Rational design of PLGA nanoparticle vaccine delivery systems to improve immune responses[J]. Molecular Pharmaceutics, 2019, 16(12): 5000-5012. |
26 | Ebrahimian M, Hashemi M, Maleki M, et al. Co-delivery of dual toll-like receptor agonists and antigen in poly(lactic-co-glycolic) acid/polyethylenimine cationic hybrid nanoparticles promote efficient in vivo immune responses[J]. Frontiers in Immunology, 2017, 8: 1077. |
27 | Clawson C, Huang C T, Futalan D, et al. Delivery of a peptide via poly(d, l-lactic-co-glycolic) acid nanoparticles enhances its dendritic cell-stimulatory capacity[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2010, 6(5): 651-661. |
28 | Zhang W F, Wang L Y, Yang T Y, et al. Immunopotentiator-loaded polymeric microparticles as robust adjuvant to improve vaccine efficacy[J]. Pharmaceutical Research, 2015, 32(9): 2837-2850. |
29 | Luo L, Qin T, Huang Y F, et al. Exploring the immunopotentiation of Chinese yam polysaccharide poly(lactic-co-glycolic acid) nanoparticles in an ovalbumin vaccine formulation in vivo[J]. Drug Delivery, 2017, 24(1): 1099-1111. |
30 | 岳华, 马光辉. 高分子纳微球在工程疫苗中的新应用[J]. 高分子学报, 2020, 51(2): 125-135. |
Yue H, Ma G H. Applications of polymeric micro/nanoparticles in engineered vaccines[J]. Acta Polymerica Sinica, 2020, 51(2): 125-135. | |
31 | 胡运玖, 左奕, 邬均, 等. 聚己内酯载药微球的制备及释药性能研究[J]. 材料导报, 2015, 29(2): 29-32, 56. |
Hu Y J, Zuo Y, Wu J, et al. Preparation and release study of drug loaded poly(ε-caprolactone)microspheres[J]. Materials Review, 2015, 29(2): 29-32, 56. | |
32 | Sollohub K, Cal K. Spray drying technique (Ⅱ):. Current applications in pharmaceutical technology[J]. Journal of Pharmaceutical Sciences, 2010, 99(2): 587-597. |
33 | Arpagaus C. PLA/PLGA nanoparticles prepared by nano spray drying[J]. Journal of Pharmaceutical Investigation, 2019, 49(4): 405-426. |
34 | Zhang D L, Li X N, Hao D X, et al. Systematic purification of polydatin, resveratrol and anthraglycoside B from Polygonum cuspidatum Sieb. et Zucc[J]. Separation and Purification Technology, 2009, 66(2): 329-339. |
35 | Li X, Wei Y, Wen K, et al. Novel insights on the encapsulation mechanism of PLGA terminal groups on ropivacaine[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 160: 143-151. |
36 | Wang W C, Zhou W Q, Li J, et al. Comparison of covalent and physical immobilization of lipase in gigaporous polymeric microspheres[J]. Bioprocess and Biosystems Engineering, 2015, 38(11): 2107-2115. |
37 | Sun L J, Xiong Z D, Zhou W Q, et al. Novel konjac glucomannan microcarriers for anchorage-dependent animal cell culture[J]. Biochemical Engineering Journal, 2015, 96: 46-54. |
38 | Qi F, Wu J, Yang T Y, et al. Mechanistic studies for monodisperse exenatide-loaded PLGA microspheres prepared by different methods based on SPG membrane emulsification[J]. Acta Biomaterialia, 2014, 10(10): 4247-4256. |
39 | 马光辉, 苏志国. 微球材料尺寸和结构控制的过程工程[J]. 化工学报, 2014, 65(7): 2574-2587. |
Ma G H, Su Z G. Process engineering for size and structure control of microspheres[J]. CIESC Journal, 2014, 65(7): 2574-2587. | |
40 | 李小青, 巩方玲, 马光辉. 旋转膜乳化法制备均一魔芋葡苷聚糖凝胶微球[J]. 过程工程学报, 2014, 14(2): 296-303. |
Li X Q, Gong F L, Ma G H. Preparation of uniform konjac glucomannan gel microspheres by rotating membrane emulsification[J]. The Chinese Journal of Process Engineering, 2014, 14(2): 296-303. | |
41 | 何帆, 齐峰, 吴颉, 等. 快速膜乳化法制备载生长激素释放肽-6的PLGA微球[J]. 过程工程学报, 2013, 13(3): 458-465. |
He F, Qi F, Wu J, et al. Preparation of growth hormone-releasing peptide-6 loaded PLGA microspheres by premix membrane emulsification[J]. The Chinese Journal of Process Engineering, 2013, 13(3): 458-465. | |
42 | 张慧霞, 韦祎, 王玉霞, 等. 快速膜乳化法制备尺寸均一PELA多孔微球及其孔径调控[J]. 过程工程学报, 2013, 13(3): 466-473. |
Zhang H X, Wei Y, Wang Y X, et al. Preparation of uniform-sized porous PELA microspheres and their pore size control[J]. The Chinese Journal of Process Engineering, 2013, 13(3): 466-473. | |
43 | Ma G H, Yue H. Advances in uniform polymer microspheres and microcapsules: preparation and biomedical applications[J]. Chinese Journal of Chemistry, 2020, 38(9): 911-923. |
44 | 包谢茹, 吴颉, 马光辉. 用于细菌生物膜感染治疗的Pickering乳液制备[J]. 过程工程学报, 2021, 21(5): 594-600. |
Bao X R, Wu J, Ma G H. Preparation of a Pickering emulsion for treatment of bacterial biofilm infection[J]. The Chinese Journal of Process Engineering, 2021, 21(5): 594-600. | |
45 | Hao D X, Gong F L, Hu G H, et al. Controlling factors on droplets uniformity in membrane emulsification: experiment and modeling analysis[J]. Industrial & Engineering Chemistry Research, 2008, 47(17): 6418-6425. |
46 | 郝冬霞. 膜乳化法结合悬浮聚合制备均一多孔聚苯乙烯微球的过程研究[D]. 北京:中国科学院研究生院(过程工程研究所), 2009. |
Hao D X. Preparation of homogeneous porous polystyrene microspheres by membrane emulsification combined with suspension polymerization [D]. Beijing: Graduate University of Chinese Academy of Sciences (Institute of Process Engineering), 2009. | |
47 | Wang L Y, Gu Y H, Zhou Q Z, et al. Preparation and characterization of uniform-sized chitosan microspheres containing insulin by membrane emulsification and a two-step solidification process[J]. Colloids and Surfaces B: Biointerfaces, 2006, 50(2): 126-135. |
48 | Wu J, Wei W, Wang L Y, et al. Preparation of uniform-sized pH-sensitive quaternized chitosan microsphere by combining membrane emulsification technique and thermal-gelation method[J]. Colloids and Surfaces B: Biointerfaces, 2008, 63(2): 164-175. |
49 | Liu R, Huang S S, Wan Y H, et al. Preparation of insulin-loaded PLA/PLGA microcapsules by a novel membrane emulsification method and its release in vitro[J]. Colloids and Surfaces B: Biointerfaces, 2006, 51(1): 30-38. |
50 | Zhou Q Z, Wang L Y, Ma G H, et al. Preparation of uniform-sized agarose beads by microporous membrane emulsification technique[J]. Journal of Colloid and Interface Science, 2007, 311(1): 118-127. |
51 | 刘艳, 王月琦, 范清泽, 等. 快速膜乳化与热固化法制备粒径均一的pH敏感壳聚糖季铵盐凝胶微球[J]. 过程工程学报, 2015, 15(3): 473-481. |
Liu Y, Wang Y Q, Fan Q Z, et al. Preparation of uniform-sized pH-sensitive HTCC hydrogel microspheres by premix membrane emulsification and thermal gelation[J]. The Chinese Journal of Process Engineering, 2015, 15(3): 473-481. | |
52 | Xu J H, Luo G S, Chen G G, et al. Experimental and theoretical approaches on droplet formation from a micrometer screen hole[J]. Journal of Membrane Science, 2005, 266(1/2): 121-131. |
53 | Suzuki K, Hayakawa K, Hagura Y. Preparation of high concentration O/W and W/O emulsions by the membrane phase inversion emulsification using PTFE membranes[J]. Food Science and Technology Research, 1999, 5(2): 234-238. |
54 | 韦祎, 巩方玲, 崔一民, 等. 微孔膜乳化技术制备缓释微球的研究进展[J]. 中国医药工业杂志, 2018, 49(10): 1341-1352. |
Wei Y, Gong F L, Cui Y M, et al. Research progress of sustained-release microspheres prepared by membrane emulsification technique[J]. Chinese Journal of Pharmaceuticals, 2018, 49(10): 1341-1352. | |
55 | Jin H J, Chong H H, Zhu Y M, et al. Preparation and evaluation of amphipathic lipopeptide-loaded PLGA microspheres as sustained-release system for AIDS prevention[J]. Engineering in Life Sciences, 2020, 20(11): 476-484. |
56 | 文康, 韦祎, 马光辉. 基于响应面法对制备高包埋率ROP-PLGA微球的影响因素分析[J]. 过程工程学报, 2021, 21(1): 83-91. |
Wen K, Wei Y, Ma G H. Analysis of preparation factors of ROP-PLGA microspheres with high encapsulation efficiency based on response surface method[J]. The Chinese Journal of Process Engineering, 2021, 21(1): 83-91. | |
57 | Na X M, Guo J J, Li T, et al. Double emulsion-templated single-core PLGA microcapsules with narrow size distribution and controllable structure by using premix membrane emulsification[J]. ChemNanoMat, 2020, 6(7): 1059-1062. |
58 | Qi F, Wu J, Hao D X, et al. Comparative studies on the influences of primary emulsion preparation on properties of uniform-sized exenatide-loaded PLGA microspheres[J]. Pharmaceutical Research, 2014, 31(6): 1566-1574. |
59 | Mi Y C, Li J, Zhou W Q, et al. Improved stability of emulsions in preparation of uniform small-sized konjac glucomanna (KGM) microspheres with epoxy-based polymer membrane by premix membrane emulsification[J]. Polymers, 2016, 8(3): 53. |
60 | Zhang H, Zhao L, Huang Y, et al. Uniform polysaccharide composite microspheres with controllable network by microporous membrane emulsification technique[J]. Analytical and Bioanalytical Chemistry, 2018, 410(18): 4331-4341. |
61 | Wright S G, Christenson T, Yeah T Y, et al. Polymer-based sustained release device: US7456254[P]. 2008-11-25. |
62 | 刘琳娜, 李欣, 张琰, 等. 胰高血糖素样肽-2/聚乳酸-羟基乙酸微球的制备及其体外释药性质研究[J]. 中国药房, 2010, 21(29): 2755-2757. |
Liu L N, Li X, Zhang Y, et al. Preparation and in vitro release property of glucagon-like peptide-2/PLGA microspheres[J]. China Pharmacy, 2010, 21(29): 2755-2757. | |
63 | 冯子雄, 徐建昌, 章莉娟. 溶剂挥发法制备大孔聚合物微球[J]. 高校化学工程学报, 2019, 33(6): 1509-1515. |
Feng Z X, Xu J C, Zhang L J. Preparation of macroporous polymer microspheres by a solvent evaporation method[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(6): 1509-1515. | |
64 | Wang H N, Wang F, Li X Q, et al. Preparation and performance investigation of polydimethylsiloxane microsphere/polyvinyl alcohol composite hydrogel[J]. Materials Letters, 2018, 228: 399-402. |
65 | Wei Y, Wang Y X, Wang L Y, et al. Fabrication strategy for amphiphilic microcapsules with narrow size distribution by premix membrane emulsification[J]. Colloids and Surfaces B: Biointerfaces, 2011, 87(2): 399-408. |
66 | Ma G H, Nagai M, Omi S. Study on preparation and morphology of uniform artificial polystyrene-poly(methyl methacrylate) composite microspheres by employing the SPG (shirasu porous glass) membrane emulsification technique[J]. Journal of Colloid and Interface Science, 1999, 214(2): 264-282. |
67 | 马光辉, 韦祎, 王玉霞, 等. 重组人生长激素rhGH长效缓释微囊及其制备方法: 102370630A[P]. 2012-03-14. |
Ma G H, Wei Y, Wang Y X, et al. Recombinant human growth hormone (rhGH) long-acting sustained-release microcapsule and preparation method thereof: 102370630A[P]. 2012-03-14. | |
68 | 王玉霞, 马光辉, 王宁, 等. 一种包埋小分子亲水性药物缓释微囊及其制备方法: 104224753B[P]. 2017-02-08. |
Wang Y X, Ma G H, Wang N, et al. Small molecule hydrophilic drug-<wbr>embedded sustained-release capsule and preparation method thereof: 104224753B[P]. 2017-02-08. | |
69 | 曾烨婧, 王连艳, 马光辉, 等. 快速膜乳化法制备载紫杉醇聚乳酸类微球[J]. 过程工程学报, 2010, 10(3): 568-575. |
Zeng Y J, Wang L Y, Ma G H, et al. Preparation of microspheres of paclitaxel-loaded PLA, PLGA and PELA by premix membrane emulsification[J]. The Chinese Journal of Process Engineering, 2010, 10(3): 568-575. | |
70 | 刘雁南, 王连艳, 杨婷媛, 等. 白油佐剂粒径均一性与炎症和免疫学效应的相关性[J]. 过程工程学报, 2015, 15(4): 653-658. |
Liu Y N, Wang L Y, Yang T Y, et al. Particle size uniformity of white oil adjuvant and its related inflammation and immunological effect[J]. The Chinese Journal of Process Engineering, 2015, 15(4): 653-658. | |
71 | Oyewumi M O, Kumar A, Cui Z R. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses[J]. Expert Review of Vaccines, 2010, 9(9): 1095-1107. |
72 | Shah R R, O'Hagan D T, Amiji M M, et al. The impact of size on particulate vaccine adjuvants[J]. Nanomedicine (London, England), 2014, 9(17): 2671-2681. |
73 | 付寒, 温新国, 典灵辉, 等. 粒径均一单分散载药微球的制备技术及其应用[J]. 中国医药工业杂志, 2011, 42(11): 856-862, 870. |
Fu H, Wen X G, Dian L H, et al. Methods for preparation of uniform-sized and monodisperse drug-loaded microspheres and their applications[J]. Chinese Journal of Pharmaceuticals, 2011, 42(11): 856-862, 870. | |
74 | Wei W, Wang L Y, Yuan L, et al. Bioprocess of uniform-sized crosslinked chitosan microspheres in rats following oral administration[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69(3): 878-886. |
75 | Qi F, Yang L Q, Wu J, et al. Microcosmic mechanism of dication for inhibiting acylation of acidic peptide[J]. Pharmaceutical Research, 2015, 32(7): 2310-2317. |
76 | 杨柳青, 王丽秋, 吴颉, 等. 快速膜乳化法制备胸腺法新长效缓释微球[J]. 过程工程学报, 2014, 14(6): 994-999. |
Yang L Q, Wang L Q, Wu J, et al. Preparation of thymalfasin loaded PLGA microspheres by premix membrane emulsification as long-term effective formulation[J]. The Chinese Journal of Process Engineering, 2014, 14(6): 994-999. | |
77 | Zhang Y L, Wei W, Lv P, et al. Preparation and evaluation of alginate-chitosan microspheres for oral delivery of insulin[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 77(1): 11-19. |
78 | Wei Y, Wang Y X, Wang W, et al. Microcosmic mechanisms for protein incomplete release and stability of various amphiphilic mPEG-PLA microspheres[J]. Langmuir, 2012, 28(39): 13984-13992. |
79 | Liu Y, Wang L Y, Zhang Y, et al. Uniform-sized water-in-oil vaccine formulations enhance immune response against Newcastle disease and avian influenza in chickens[J]. International Immunopharmacology, 2014, 23(2): 603-608. |
80 | Liu Q, Chen X, Jia J, et al. PH-Responsive poly(D, L-lactic-co-glycolic acid) nanoparticles with rapid antigen release behavior promote immune response[J]. ACS Nano, 2015, 9(5): 4925-4938. |
81 | Longo F, Mansueto G, Lapadula V, et al. Combination of aprepitant, palonosetron and dexamethasone as antiemetic prophylaxis in lung cancer patients receiving multiple cycles of cisplatin-based chemotherapy[J]. International Journal of Clinical Practice, 2012, 66(8): 753-757. |
82 | Wei W, Lv P P, Chen X M, et al. Codelivery of mTERT siRNA and paclitaxel by chitosan-based nanoparticles promoted synergistic tumor suppression[J]. Biomaterials, 2013, 34(15): 3912-3923. |
83 | Fu Q, Lv P, Chen Z K, et al. Programmed co-delivery of paclitaxel and doxorubicin boosted by camouflaging with erythrocyte membrane[J]. Nanoscale, 2015, 7(9): 4020-4030. |
84 | 马宇峰, 吕丕平, 岳占国, 等. 以壳聚糖为基质的智能电荷翻转体系用于紫杉醇的高效输送[J]. 过程工程学报, 2012, 12(3): 460-465. |
Ma Y F, Lv P P, Yue Z G, et al. Chitosan-based intelligent charge-reversed system for high efficiency delivery of paclitaxel[J]. The Chinese Journal of Process Engineering, 2012, 12(3): 460-465. | |
85 | Lv P P, Ma Y F, Yu R, et al. Targeted delivery of insoluble cargo (paclitaxel) by PEGylated chitosan nanoparticles grafted with Arg-Gly-Asp (RGD)[J]. Molecular Pharmaceutics, 2012, 9(6): 1736-1747. |
[1] | 马光辉, 苏志国. 微球材料尺寸和结构控制的过程工程[J]. 化工学报, 2014, 65(7): 2574-2587. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||