1 |
Xiang Z X, Peng W, Zhou W E, et al. Hybrid finite difference with the physics-informed neural network for solving PDE in complex geometries[EB/OL]. 2022. .
|
2 |
LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
|
3 |
Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366.
|
4 |
Baydin A G, Pearlmutter B A, Radul A A, et al. Automatic differentiation in machine learning: a survey[J]. Journal of Machine Learning Research, 2018, 18: 1-43.
|
5 |
Margossian C C. A review of automatic differentiation and its efficient implementation[J]. WIREs Data Mining and Knowledge Discovery, 2019, 9(4): e1305.
|
6 |
Lu L, Meng X H, Mao Z P, et al. DeepXDE: a deep learning library for solving differential equations[J]. SIAM Review, 2021, 63(1): 208-228.
|
7 |
Raissi M, Perdikaris P, Karniadakis G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707.
|
8 |
Karniadakis G E, Kevrekidis I G, Lu L, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3(6): 422-440.
|
9 |
Cai S Z, Mao Z P, Wang Z C, et al. Physics-informed neural networks (PINNs) for fluid mechanics: a review[J]. Acta Mechanica Sinica, 2021, 37(12): 1727-1738.
|
10 |
Cai S Z, Wang Z C, Wang S F, et al. Physics-informed neural networks for heat transfer problems[J]. Journal of Heat Transfer, 2021, 143(6): 060801.
|
11 |
Gao H, Sun L N, Wang J X. PhyGeoNet: physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain[J]. Journal of Computational Physics, 2021, 428: 110079.
|
12 |
陆至彬, 瞿景辉, 刘桦, 等. 基于物理信息神经网络的传热过程物理场代理模型的构建[J]. 化工学报, 2021, 72(3): 1496-1503.
|
|
Lu Z B, Qu J H, Liu H, et al. Surrogate modeling for physical fields of heat transfer processes based on physics-informed neural network[J]. CIESC Journal, 2021, 72(3): 1496-1503.
|
13 |
Laubscher R, Rousseau P. Application of a mixed variable physics-informed neural network to solve the incompressible steady-state and transient mass, momentum, and energy conservation equations for flow over in-line heated tubes[J]. Applied Soft Computing, 2022, 114: 108050.
|
14 |
Laubscher R. Simulation of multi-species flow and heat transfer using physics-informed neural networks[J]. Physics of Fluids, 2021, 33(8): 087101.
|
15 |
corporation NVIDIA (2021) modulus user guide (release v 21.06)[EB/OL]. [2021-11-09]. .
|
16 |
Verstraete T, Scholl S. Stability analysis of partitioned methods for predicting conjugate heat transfer[J]. International Journal of Heat and Mass Transfer, 2016, 101: 852-869.
|
17 |
Scholl S, Janssens B, Verstraete T. Stability of static conjugate heat transfer coupling approaches using Robin interface conditions[J]. Computers & Fluids, 2018, 172: 209-225.
|
18 |
Errera M P, Moretti R, Salem R, et al. A single stable scheme for steady conjugate heat transfer problems[J]. Journal of Computational Physics, 2019, 394: 491-502.
|
19 |
Ermagan H, Rafee R. Geometric optimization of an enhanced microchannel heat sink with superhydrophobic walls[J]. Applied Thermal Engineering, 2018, 130: 384-394.
|
20 |
刘瑜, 邓家钰, 王成恩, 等. 基于特征分裂有限元准隐格式的共轭传热整体耦合数值模拟方法[J]. 力学学报, 2021, 53(4): 986-997.
|
|
Liu Y, Deng J Y, Wang C E, et al. A monolithic method for simulating conjugate heat transfer via quasi-implicit scheme of characteristic-based split finite element[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 986-997.
|
21 |
Divo E, Steinthorsson E, Rodriquez F, et al. Glenn-HT/BEM conjugate heat transfer solver for large-scale turbomachinery models[R]. United States: NASA, 2003.
|
22 |
Sun L N, Gao H, Pan S W, et al. Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 361: 112732.
|
23 |
Raissi M, Yazdani A, Karniadakis G E. Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations [J]. Science, 2020, 367(6481): 1026-1030.
|
24 |
Jin X W, Cai S Z, Li H, et al. NSFnets (Navier-Stokes flow nets): physics-informed neural networks for the incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 2021, 426: 109951.
|
25 |
Zhu Q M, Liu Z L, Yan J H. Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks[J]. Computational Mechanics, 2021, 67(2): 619-635.
|
26 |
Haghighat E, Raissi M, Moure A, et al. A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 379: 113741.
|
27 |
Jagtap A D, Kawaguchi K, Karniadakis G E. Adaptive activation functions accelerate convergence in deep and physics-informed neural networks[J]. Journal of Computational Physics, 2020, 404: 109136.
|
28 |
芯片冷却教学案例 [EB/OL]. [2022-02-16]. .
|
29 |
Rao R V, Waghmare G G. Multi-objective design optimization of a plate-fin heat sink using a teaching-learning-based optimization algorithm[J]. Applied Thermal Engineering, 2015, 76: 521-529.
|
30 |
Sukumar N, Srivastava A. Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 389: 114333.
|
31 |
Hennigh O, Narasimhan S, Nabian M A, et al. NVIDIA SimNet™: an AI-accelerated multi-physics simulation framework[C]// Computational Science — ICCS 2021, 2021: 447-461.
|