基于ART-SVR的过程建模及在干点软测量中的应用
吴国庆;颜学峰
华东理工大学自动化研究所,上海 200237
Process modeling based on ART-SVR and its application in dry point soft measurement
WU Guoqing;YAN Xuefeng
摘要:
针对石油化工生产过程通常呈高度非线性,且生产过程数据呈非连续、具有一定类别特性等特征,提出基于自适应谐振神经网络(adaptive resonance theory,ART)和支持向量回归(support vector regression, SVR)相结合的建模方法(ART-SVR)。首先,基于建模样本,通过ART将样本模式空间分割成若干模式特性相近的子空间;然后,对各子空间分别采用SVR建立各自模型,实现基于样本模式空间分割的“分段”建模。仿真试验和在石脑油干点软测量建模的实际应用表明:ART-SVR模型的拟合精度和预测精度均优于全局SVR模型。