化工学报 ›› 2025, Vol. 76 ›› Issue (7): 3696-3709.DOI: 10.11949/0438-1157.20241250

• 材料化学工程与纳米技术 • 上一篇    下一篇

WO3纳米颗粒定性表面羟基化重构及其改性变压器油机制研究

张海丰1(), 闫静怡1, 岳玉学2, 张子龙1, 王柏林1(), 李小年2()   

  1. 1.东北电力大学化学工程学院,吉林 吉林 132012
    2.浙江工业大学工业催化研究所,浙江 杭州 310014
  • 收稿日期:2024-11-05 修回日期:2025-02-21 出版日期:2025-07-25 发布日期:2025-08-13
  • 通讯作者: 王柏林,李小年
  • 作者简介:张海丰(1974—),男,博士,教授,zhfeepu@163.com
  • 基金资助:
    国家自然科学基金项目(22202036);吉林省科技发展计划项目(20230101292JC);国网吉林省电力有限公司科技项目(2022JBGS-01);海南省自然科学基金项目(524QY569)

Investigation of hydroxylation-induced reconstruction on WO3 surface and the modification mechanism of transformer oil

Haifeng ZHANG1(), Jingyi YAN1, Yuxue YUE2, Zilong ZHANG1, Bolin WANG1(), Xiaonian LI2()   

  1. 1.School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, Jilin, China
    2.Industrial Catalysis Institute, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
  • Received:2024-11-05 Revised:2025-02-21 Online:2025-07-25 Published:2025-08-13
  • Contact: Bolin WANG, Xiaonian LI

摘要:

金属氧化物纳米颗粒改性变压器油因稳定性欠佳,频繁出现绝缘性能下降的现象,表面羟基化对纳米改性变压器油绝缘性能的影响机制仍存在争议。通过溶胶-凝胶法和两步法制备三氧化钨(WO3)纳米改性变压器油。借助X射线光电子能谱(XPS)和傅里叶变换红外光谱(FTIR)等表征分析,证实油中水分子与WO3纳米颗粒表面存在羟基化作用,结合差分电荷密度与Bader电荷计算结果验证了该过程可调控其表面局域电子态结构,优化纳米改性变压器油的绝缘性能(击穿电压可达68.50 kV)。此外,WO3纳米颗粒表面“捕获”电子以及双电层的形成进一步阐释延长弛豫时间对纳米改性变压器油电气性能的优化机理。开展热导率测试并辅以红外热成像分析,揭示了油液中固相纳米颗粒间声子热传导现象,阐明了掺杂WO3纳米颗粒提升体系导热性能的作用机制。本项工作从分子尺度上证实了变压器油体系中羟基化作用对纳米颗粒表面电子排布和重构行为的影响,可为研究纳米改性变压器油的微观机理提供参考。

关键词: 改性变压器油, 电子态, 表面羟基化, 红外热成像

Abstract:

Metal oxide nanoparticles modified transformer oil frequently suffer from the phenomenon of reduced insulation performance due to poor stability. The mechanism of the effect of surface hydroxylation on the insulation performance of nano-modified transformer oil is still controversial. Nano-WO3 modified transformer oil (WMO) was prepared by sol-gel and two-step methods. X-Ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) revealed the hydroxylation interaction between water molecules and the surface of WO3 NPs. Besides, the integration of differential charge density analysis and Bader charge calculations validated that this mechanism enables precise modulation of surface-localized electronic configurations, which positively impacts the insulation performance of the nanoparticle-modified transformer oil, as evidenced by the breakdown voltage of up to 68.50 kV. Additionally, the trapping of free electrons on the surface of WO3 NPs and the formation of electric double layer (EDL) further elucidate the mechanism by which extended relaxation time optimizes the electrical properties of WMO. Thermal conductivity tests and infrared thermography analyses were uncovered phonon-mediated heat transfer phenomena between solid-phase nanoparticles within the oil, elucidating the mechanism of doped WO3 NPs to enhance the thermal conductivity of WMO. This study confirms the impact of hydroxylation on the electronic configuration and reconstruction behavior of NPs surfaces in transformer oil at the molecular level, providing crucial support for understanding the microscopic mechanisms of nanoparticle-modified transformer oils.

Key words: nano-modified transformer oil, electronic states, surface hydroxylation, infrared thermography

中图分类号: