化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 467-474.DOI: 10.11949/0438-1157.20210097
收稿日期:
2021-01-15
修回日期:
2021-03-02
出版日期:
2021-06-20
发布日期:
2021-06-20
通讯作者:
金文标
作者简介:
车林(1992—),女,博士研究生, 基金资助:
CHE Lin(),JIN Wenbiao(),CHEN Hongyi,CHI Huizhong,LIANG Yunyue
Received:
2021-01-15
Revised:
2021-03-02
Online:
2021-06-20
Published:
2021-06-20
Contact:
JIN Wenbiao
摘要:
反硝化是污水脱氮的关键步骤。投加反硝化微生物菌剂是提升总氮去除效率的有效方法。本实验从城市污水处理厂A2/O工艺厌氧池和缺氧池获取活性污泥并筛选出Pseudomonas aeruginosa F5(以下简称F5)。构建以实际生活污水为基础的培养基培养F5,通过正交试验的方式确定关键营养物质的最适投加量。研究发现,牛肉膏、K2SO4和MgSO4·7H2O的最适投加量分别为5.0 g/L、6.7 mg/L和5.0 mg/L。为验证F5作为反硝化微生物菌剂的可行性,在50 m3 A2/O中试反应器中以1∶10000(V菌剂/V日处理污水)比例连续投加F5,总氮去除率提升了19.6% ~ 24.0%。为进一步提高反硝化微生物菌剂的效能,采用常压室温等离子体育种法诱变F5后获得两株诱变菌株A75和A82。结果表明,A75和A82的总氮去除率较F5分别提高了14.5% ~ 16.2%和16.8% ~ 18.0%。该研究为污水处理厂提升氮排放标准提供了可靠的理论依据。
中图分类号:
车林, 金文标, 陈洪一, 迟惠中, 梁云跃. 反硝化微生物菌剂提升A2/O工艺TN去除效果[J]. 化工学报, 2021, 72(S1): 467-474.
CHE Lin, JIN Wenbiao, CHEN Hongyi, CHI Huizhong, LIANG Yunyue. Denitrifying microbial agents improving TN removal of A2/O process[J]. CIESC Journal, 2021, 72(S1): 467-474.
水质指标 | 范围/(mg/L) |
---|---|
COD | 439.0±106.7 |
NH4+-N | 46.6±5.8 |
TN | 56.6±6.5 |
TP | 4.9±1.1 |
SS | 139.0±146.0 |
表1 某污水处理厂沉砂池出水水质
Table 1 The wastewater quality of effluent from grit chamber
水质指标 | 范围/(mg/L) |
---|---|
COD | 439.0±106.7 |
NH4+-N | 46.6±5.8 |
TN | 56.6±6.5 |
TP | 4.9±1.1 |
SS | 139.0±146.0 |
K2SO4/(mg/L) | MgSO4·7H2O/(mg/L) | 微量元素溶液/(ml/L) | 牛肉膏/(g/L) |
---|---|---|---|
0 | 0 | 0 | 0 |
2.2 | 2.5 | 0.5 | 0.5 |
4.5 | 5.0 | 1.0 | 1.5 |
6.7 | 7.5 | 1.5 | 2.5 |
表2 营养元素设计投加量
Table 2 The designed adding amount of nutrient elements
K2SO4/(mg/L) | MgSO4·7H2O/(mg/L) | 微量元素溶液/(ml/L) | 牛肉膏/(g/L) |
---|---|---|---|
0 | 0 | 0 | 0 |
2.2 | 2.5 | 0.5 | 0.5 |
4.5 | 5.0 | 1.0 | 1.5 |
6.7 | 7.5 | 1.5 | 2.5 |
因子 | K2SO4/(mg/L) | MgSO4·7H2O/(mg/L) | 微量元素/ (ml/L) | 牛肉膏/(g/L) |
---|---|---|---|---|
试验1 | 2.2 | 2.5 | 0.5 | 0.5 |
试验2 | 2.2 | 5.0 | 1.0 | 1.5 |
试验3 | 2.2 | 7.5 | 1.5 | 2.5 |
试验4 | 4.5 | 2.5 | 1.0 | 2.5 |
试验5 | 4.5 | 5.0 | 1.5 | 0.5 |
试验6 | 4.5 | 7.5 | 0.5 | 1.5 |
试验7 | 6.7 | 2.5 | 1.5 | 1.5 |
试验8 | 6.7 | 5.0 | 0.5 | 2.5 |
试验9 | 6.7 | 7.5 | 1.0 | 0.5 |
表3 正交试验设计方案
Table 3 The orthogonal experimental design
因子 | K2SO4/(mg/L) | MgSO4·7H2O/(mg/L) | 微量元素/ (ml/L) | 牛肉膏/(g/L) |
---|---|---|---|---|
试验1 | 2.2 | 2.5 | 0.5 | 0.5 |
试验2 | 2.2 | 5.0 | 1.0 | 1.5 |
试验3 | 2.2 | 7.5 | 1.5 | 2.5 |
试验4 | 4.5 | 2.5 | 1.0 | 2.5 |
试验5 | 4.5 | 5.0 | 1.5 | 0.5 |
试验6 | 4.5 | 7.5 | 0.5 | 1.5 |
试验7 | 6.7 | 2.5 | 1.5 | 1.5 |
试验8 | 6.7 | 5.0 | 0.5 | 2.5 |
试验9 | 6.7 | 7.5 | 1.0 | 0.5 |
因子 | K2SO4/(mg/L) | MgSO4·7H2O/(mg/L) | 微量元素/ (ml/L) | 牛肉膏/ (g/L) | F5/(个/ 毫升) |
---|---|---|---|---|---|
对照组 | 0 | 0 | 0 | 0 | 5.1×106 |
试验1 | 2.2 | 2.5 | 0.5 | 1.0 | 5.9×107 |
试验2 | 2.2 | 5.0 | 1.0 | 3.0 | 2.2×108 |
试验3 | 2.2 | 7.5 | 1.5 | 5.0 | 2.0×108 |
试验4 | 4.5 | 2.5 | 1.0 | 5.0 | 1.8×108 |
试验5 | 4.5 | 5.0 | 1.5 | 1.0 | 6.5×107 |
试验6 | 4.5 | 7.5 | 0.5 | 3.0 | 2.8×108 |
试验7 | 6.7 | 2.5 | 1.5 | 3.0 | 2.2×108 |
试验8 | 6.7 | 5.0 | 0.5 | 5.0 | 2.9×108 |
试验9 | 6.7 | 7.5 | 1.0 | 1.0 | 6.8×107 |
表4 反硝化菌F5培养基优化的正交试验结果
Table 4 The orthogonal test results of medium optimization for F5
因子 | K2SO4/(mg/L) | MgSO4·7H2O/(mg/L) | 微量元素/ (ml/L) | 牛肉膏/ (g/L) | F5/(个/ 毫升) |
---|---|---|---|---|---|
对照组 | 0 | 0 | 0 | 0 | 5.1×106 |
试验1 | 2.2 | 2.5 | 0.5 | 1.0 | 5.9×107 |
试验2 | 2.2 | 5.0 | 1.0 | 3.0 | 2.2×108 |
试验3 | 2.2 | 7.5 | 1.5 | 5.0 | 2.0×108 |
试验4 | 4.5 | 2.5 | 1.0 | 5.0 | 1.8×108 |
试验5 | 4.5 | 5.0 | 1.5 | 1.0 | 6.5×107 |
试验6 | 4.5 | 7.5 | 0.5 | 3.0 | 2.8×108 |
试验7 | 6.7 | 2.5 | 1.5 | 3.0 | 2.2×108 |
试验8 | 6.7 | 5.0 | 0.5 | 5.0 | 2.9×108 |
试验9 | 6.7 | 7.5 | 1.0 | 1.0 | 6.8×107 |
因子 | K2SO4 | MgSO4·7H2O | 微量元素 | 牛肉膏 |
---|---|---|---|---|
均值(水平1) | 1.6×108 | 1.5×108 | 2.1×108 | 0.6×108 |
均值(水平2) | 1.7×108 | 1.9×108 | 1.5×108 | 2.4×108 |
均值(水平3) | 1.9×108 | 1.8×108 | 1.6×108 | 2.2×108 |
极差 | 3.3×107 | 3.9×107 | 5.4×107 | 1.8×108 |
表5 反硝化菌F5培养基优化的正交试验分析
Table 5 The orthogonal test analysis of medium optimization for F5
因子 | K2SO4 | MgSO4·7H2O | 微量元素 | 牛肉膏 |
---|---|---|---|---|
均值(水平1) | 1.6×108 | 1.5×108 | 2.1×108 | 0.6×108 |
均值(水平2) | 1.7×108 | 1.9×108 | 1.5×108 | 2.4×108 |
均值(水平3) | 1.9×108 | 1.8×108 | 1.6×108 | 2.2×108 |
极差 | 3.3×107 | 3.9×107 | 5.4×107 | 1.8×108 |
编号 | 6 h | 12 h | 24 h | 编号 | 6 h | 12 h | 24 h |
---|---|---|---|---|---|---|---|
A1 | - | - | + | A42 | - | - | - |
A2 | - | - | - | A43 | - | - | - |
A3 | - | - | +++ | A44 | - | - | - |
A4 | - | - | + | A45 | - | - | + |
A5 | - | - | - | A46 | + | + | +++ |
A6 | - | - | - | A47 | + | + | + |
A7 | - | - | - | A48 | ++ | + | ++ |
A8 | - | - | + | A49 | ++ | ++ | + |
A9 | - | - | ++ | A50 | + | + | ++ |
A10 | - | - | ++ | A52 | + | + | + |
A11 | - | - | - | A53 | + | + | + |
A12 | - | - | ++ | A54 | + | + | + |
A13 | - | - | + | A55 | + | + | + |
A14 | - | - | + | A56 | + | + | + |
A15 | - | - | ++ | A57 | + | + | + |
A16 | - | - | + | A58 | + | + | +++ |
A17 | - | - | - | A59 | + | + | + |
A18 | - | - | - | A60 | + | ++ | ++ |
A19 | - | - | - | A61 | + | ++ | +++ |
A20 | - | - | ++ | A64 | + | + | + |
A21 | - | - | + | A65 | + | + | + |
A22 | - | - | - | A66 | + | + | + |
A23 | - | - | - | A67 | + | + | + |
A24 | - | - | - | A68 | + | + | + |
A25 | - | - | + | A69 | + | + | +++ |
A26 | - | - | - | A70 | + | + | + |
A27 | - | - | + | A71 | + | ++ | ++ |
A28 | - | - | - | A72 | + | ++ | + |
A29 | - | - | - | A73 | ++ | ++ | ++ |
A30 | - | - | - | A74 | +++ | +++ | ++ |
A31 | - | - | - | A75 | +++ | +++ | ++ |
A32 | - | - | + | A76 | +++ | +++ | ++ |
A33 | - | - | - | A77 | +++ | +++ | ++ |
A34 | - | - | - | A78 | ++ | ++ | ++ |
A35 | - | - | - | A79 | +++ | +++ | ++ |
A36 | - | - | - | A80 | +++ | ++ | ++ |
A37 | + | + | + | A81 | +++ | +++ | ++ |
A38 | + | + | - | A82 | +++ | +++ | +++ |
A39 | + | - | - | A83 | +++ | +++ | ++ |
A40 | - | - | - | A84 | +++ | +++ | ++ |
A41 | - | - | - |
表6 ARTP诱变菌株反硝化能力考察
Table 6 The denitrification ability of ARTP mutagenesis strain
编号 | 6 h | 12 h | 24 h | 编号 | 6 h | 12 h | 24 h |
---|---|---|---|---|---|---|---|
A1 | - | - | + | A42 | - | - | - |
A2 | - | - | - | A43 | - | - | - |
A3 | - | - | +++ | A44 | - | - | - |
A4 | - | - | + | A45 | - | - | + |
A5 | - | - | - | A46 | + | + | +++ |
A6 | - | - | - | A47 | + | + | + |
A7 | - | - | - | A48 | ++ | + | ++ |
A8 | - | - | + | A49 | ++ | ++ | + |
A9 | - | - | ++ | A50 | + | + | ++ |
A10 | - | - | ++ | A52 | + | + | + |
A11 | - | - | - | A53 | + | + | + |
A12 | - | - | ++ | A54 | + | + | + |
A13 | - | - | + | A55 | + | + | + |
A14 | - | - | + | A56 | + | + | + |
A15 | - | - | ++ | A57 | + | + | + |
A16 | - | - | + | A58 | + | + | +++ |
A17 | - | - | - | A59 | + | + | + |
A18 | - | - | - | A60 | + | ++ | ++ |
A19 | - | - | - | A61 | + | ++ | +++ |
A20 | - | - | ++ | A64 | + | + | + |
A21 | - | - | + | A65 | + | + | + |
A22 | - | - | - | A66 | + | + | + |
A23 | - | - | - | A67 | + | + | + |
A24 | - | - | - | A68 | + | + | + |
A25 | - | - | + | A69 | + | + | +++ |
A26 | - | - | - | A70 | + | + | + |
A27 | - | - | + | A71 | + | ++ | ++ |
A28 | - | - | - | A72 | + | ++ | + |
A29 | - | - | - | A73 | ++ | ++ | ++ |
A30 | - | - | - | A74 | +++ | +++ | ++ |
A31 | - | - | - | A75 | +++ | +++ | ++ |
A32 | - | - | + | A76 | +++ | +++ | ++ |
A33 | - | - | - | A77 | +++ | +++ | ++ |
A34 | - | - | - | A78 | ++ | ++ | ++ |
A35 | - | - | - | A79 | +++ | +++ | ++ |
A36 | - | - | - | A80 | +++ | ++ | ++ |
A37 | + | + | + | A81 | +++ | +++ | ++ |
A38 | + | + | - | A82 | +++ | +++ | +++ |
A39 | + | - | - | A83 | +++ | +++ | ++ |
A40 | - | - | - | A84 | +++ | +++ | ++ |
A41 | - | - | - |
1 | Saktaywin W, Tsuno H, Nagare H, et al. Advanced sewage treatment process with excess sludge reduction and phosphorus recovery[J]. Water Res., 2005, 39(5): 902-910. |
2 | Zhuang H C, Guan J Y, Leu S Y, et al. Carbon footprint analysis of chemical enhanced primary treatment and sludge incineration for sewage treatment in Hong Kong[J]. J. Clean. Prod., 2020, 272: 122630. |
3 | Seuntjens D, Han M, Kerckhof F M, et al. Pinpointing wastewater and process parameters controlling the AOB to NOB activity ratio in sewage treatment plants[J]. Water Res., 2018, 138: 37-46. |
4 | Lin J T, Hu Y Y, Wang G H, et al. Sludge reduction in an activated sludge sewage treatment process by lysis-cryptic growth using ClO2-ultrasonication disruption[J]. Biochem. Eng. J., 2012, 68: 54-60. |
5 | Painter H A. Review of literature on inorganic nitrogen metabolism in microorganisms[J]. Water Res., 1970, 4(6): 393-450. |
6 | Liu Y, Capdeville B. Specific activity of nitrifying biofilm in water nitrification process[J]. Water Res., 1996, 7(30): 1645-1650. |
7 | 张民权, 刘永, 范杰, 等. 新型高效复合碳源的制备及其在反硝化脱氮中的应用[J]. 给水排水, 2019, 55(S1): 153-155, 158. |
Zhang M Q, Liu Y, Fan J, et al. Preparation of a new high-efficiency composite carbon source and its application in denitrification and denitrification[J]. Water and Wastewater Engineering, 2019, 55(S1): 153-155, 158. | |
8 | Duan J M, Fang H D, Su B, et al. Characterization of a halophilic heterotrophic nitrification-aerobic denitrification bacterium and its application on treatment of saline wastewater[J]. Bioresource Technol., 2015, 179: 421-428. |
9 | Xia X H, Yang Z F, Huang G H, et al. Nitrification in natural waters with high suspended-solid content—a study for the Yellow River[J]. Chemosphere, 2004, 57(8): 1017-1029. |
10 | Xu G J, Xu X C, Yang F L, et al. Partial nitrification adjusted by hydroxylamine in aerobic granules under high DO and ambient temperature and subsequent Anammox for low C/N wastewater treatment[J]. Chem. Eng. J., 2012, 213: 338-345. |
11 | Qian W T, Ma B, Li X Y, et al. Long-term effect of pH on denitrification: high pH benefits achieving partial-denitrification[J]. Bioresource Technol., 2019, 278: 444-449. |
12 | Li Q L, Mahendra S, Lyon D Y, et al. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications[J]. Water Res., 2008, 42(18): 4591-4602. |
13 | Galanakis C M, Tsatalas P, Charalambous Z, et al. Control of microbial growth in bakery products fortified with polyphenols recovered from olive mill wastewater[J]. Environ. Technol. Inno., 2018, 10: 1-15. |
14 |
He Z Q, Han W, Jin W B, et al. Cultivation of Scenedesmus obliquus and Chlorella pyrenoidosa in municipal wastewater using monochromatic and white LED as light sources[J]. Waste Biomass Valor., 2021, doi: 10.1007/s12649-021-01359-4.
DOI |
15 | Gao D W, An R,Tao Y, et al. Simultaneous methane production and wastewater reuse by a membrane-based process: evaluation with raw domestic wastewater[J]. J. Hazard. Mater., 2011, 186(1): 383-389. |
16 | Arrigo K R. Marine microorganisms and global nutrient cycles[J]. Nature, 2005, 437: 349-355. |
17 | Peterson W H, Peterson M S. Relation of bacteria to vitamins and other growth factors[J]. Bacteriology Reviews, 1945, 9(2): 49-109. |
18 | 黄彬, 周新程, 陈冬, 等. 功能菌剂强化-无回流多级A/O处理村镇生活污水工艺研究[J]. 湖北农业科学, 2017, 56(13): 2446-2450. |
Huang B, Zhou X C, Chen D, et al. Research on treatment of rural domestic wastewater with technical process of multiple stages A/O without reflux and enhancement by functional bacteria[J]. Hubei Agricultural Sciences, 2017, 56(13): 2446-2450. | |
19 | 王为. 复合微生物制剂对于低碳源CASS工艺污水厂脱氮除磷优化研究[D]. 成都:西南交通大学, 2017. |
Wang W. Optimized strategies in utilizing compound microorganism preparation at low carbon source CASS technology oriented sewage plants to neutralize nitrogen and phosphorous[D]. Chengdu: Southwest Jiaotong University, 2017. | |
20 | Zhu Z M, Zhang J, Ji X M, et al. Evolutionary engineering of industrial microorganisms-strategies and applications[J]. Appl. Microbiol. Biotechnol., 2018, 102: 4615-4627. |
21 | Yin K, Wang Q N, Lv M, et al. Microorganism remediation strategies towards heavy metals[J]. Chem. Eng. J., 2019, 360: 1553-1563. |
22 | Viana D, Comos M, McAdam P R, et al. A single natural nucleotide mutation alters bacterial pathogen host tropism[J]. Nat. Genet., 2015, 47: 361-366. |
23 | Ben-Jacob E, Cohen I, Levine H. Cooperative self-organization of microorganisms[J]. Adv. Phys., 2000, 49(4): 395-554. |
24 | Dahabieh M S, Thevelein J M, Gibson B. Multimodal microorganism development: integrating top-down biological engineering with bottom-up rational design[J]. Trends Biotechnol., 2020, 38(3): 241-253. |
25 | Guo J, Luo W, Wu X M, et al. Improving RNA content of salt-tolerant Zygosaccharomyces rouxii by atmospheric and room temperature plasma (ARTP) mutagenesis and its application in soy sauce brewing[J]. World J. Microb. Biot., 2019, 35(12):1-10. |
26 | Zhang X, Zhang X F, Li H P, et al. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool[J]. Appl. Microbiol. Biotechnol., 2014, 98: 5387-5396. |
27 | Cui L Y, Wang S S, Guan C G, et al. Breeding of methanol-tolerant Methylobacterium extorquens AM1 by atmospheric and room temperature plasma mutagenesis combined with adaptive laboratory evolution[J]. Biotechnol. J., 2018, 13(6): 1700679. |
28 | Zheng B, Ma X Y, Wang N, et al. Utilization of rare codon-rich markers for screening amino acid overproducers[J]. Nature Communications, 2018, 9(1): 3616. |
29 | Zhang X, Zhang C, Zhou Q Q, et al. Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma (ARTP) and conventional mutagenesis[J]. Appl. Microbiol. Biotechnol., 2015, 99:5639-5646. |
30 | 封勇, 舒青龙. 一株环境Klebsiella pneumoniae硝化与反硝化研究[J]. 环境科学与技术, 2016, 39(S1):41-46. |
Feng Y, Shu Q L. Characteristics of nitrifying and denitrifying of an environmental Klebsiella pneumoniae strain[J]. Environmental Science & Technology, 2016, 39(S1):41-46. | |
31 | 刘小英, 冯晟, 班宜辉, 等. 一株异养硝化-好氧反硝化细菌的分离鉴定及其脱氮性能研究[J]. 生态环境学报, 2016, 25(12):1983-1990. |
Liu X Y, Feng S, Ban Y H, et al. Study on isolation, identification and nitrogen removal performance of a heterotrophic nitrification-aerobic denitrification bacterium [J]. Ecology and Environmental Sciences, 2016, 25(12):1983-1990. |
[1] | 孙雅雯, 张建华, 彭永臻, 王淑莹. 外加碳源类型对A2/O-BCO系统脱氮除磷性能的影响[J]. 化工学报, 2018, 69(8): 3626-3634. |
[2] | 何佳敏, 孟佳, 张永, 李建政. 温度降低对UMSR处理高氨氮低碳氮比养猪废水效能的影响[J]. 化工学报, 2017, 68(5): 2074-2080. |
[3] | 王成, 孟佳, 李玖龄, 李建政, 赵贞. 升流式微氧生物膜反应器处理高氨氮低C/N比养猪废水的效能[J]. 化工学报, 2016, 67(9): 3895-3901. |
[4] | 罗亚红, 李冬, 鲍林林, 许达, 蔡言安, 张杰. 长泥龄改良A2/O工艺的短程硝化反硝化除磷[J]. 化工学报, 2014, 65(12): 4985-4996. |
[5] | 金羽, 李建政, 任南琪, 刘淑丽. 耐冷氨氧化功能菌群的富集及其对A2/O系统的生物强化[J]. 化工学报, 2013, 64(9): 3367-3372. |
[6] | 李德生, 范太兴, 申彦冰, 吴为中. 污水处理厂尾水的电化学脱氮技术[J]. 化工学报, 2013, 64(3): 1084-1090. |
[7] | 李思敏, 杜国帅, 唐锋兵. 多点进水改良型复合A2/O处理低C/N污水[J]. 化工学报, 2013, 64(10): 3805-3811. |
[8] | 张兰河1,田 宇1,郭静波2,赵 可3,唐同同1,王立刚1,马 放3. 微生物菌剂的构建及其在城市污水处理中的应用[J]. 化工进展, 2013, 32(08): 1943-1948. |
[9] | 李 芳1,2,崔红梅1,2,吕炳南3. 生物转盘同步去除化学需氧量和氮的实验研究[J]. 化工进展, 2012, 31(07): 1615-1619. |
[10] | 张兰河1,2,王璐瑶1,张万友1,王旭明3. 进水负荷与硝化液回流比对低污泥浓度A2/O工艺脱氮效果的影响[J]. 化工进展, 2012, 31(03): 693-698. |
[11] | 陈永志,彭永臻,王建华,顾升波. A2/O-曝气生物滤池工艺反硝化除磷 [J]. CIESC Journal, 2011, 62(3): 797-804. |
[12] | 乔 楠,张 静,张金榜,孙 伟,于大禹. 纳米Fe3O4负载好氧反硝化菌脱氮除磷性能 [J]. CIESC Journal, 2009, 28(11): 2058-. |
[13] | 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765-1770. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||