化工学报 ›› 2023, Vol. 74 ›› Issue (S1): 113-121.DOI: 10.11949/0438-1157.20221529
周绍华1(), 詹飞龙1, 丁国良1(
), 张浩2, 邵艳坡2, 刘艳涛2, 郜哲明2
收稿日期:
2022-11-03
修回日期:
2022-12-02
出版日期:
2023-06-05
发布日期:
2023-09-27
通讯作者:
丁国良
作者简介:
周绍华(1992—),男,博士研究生,zhoushaohuastks@sjtu.edu.cn
基金资助:
Shaohua ZHOU1(), Feilong ZHAN1, Guoliang DING1(
), Hao ZHANG2, Yanpo SHAO2, Yantao LIU2, Zheming GAO2
Received:
2022-11-03
Revised:
2022-12-02
Online:
2023-06-05
Published:
2023-09-27
Contact:
Guoliang DING
摘要:
短管节流阀作为节流机构,因其结构简单而广泛应用于家用空调器中,当两相状态的制冷剂流经短管节流阀时会产生严重的噪声。设计并搭建了短管节流阀流动噪声测试台,实验研究了制冷剂流型、流量和干度对短管节流阀内流动噪声频率和声压级的影响规律,并在此基础上提出了降噪措施。实验结果表明,阀进口流型为搅浑流时产生的流动噪声声压级最大,阀进口流型为泡状流型和环状流型时产生的流动噪声较小;流动噪声的峰值频率随质量流量的增大而增大,质量流量由20 kg/h增大到80 kg/h时,流动噪声的峰值频率增大38.6%;干度由0.05增大到0.4时,流动噪声的平均声压级先增大7 dB,后减小3 dB。提出了将阀芯入口处的突扩突缩结构改为喇叭口渐缩结构的方式来实现降噪的结构优化方案,优化后的结构方案可将流动噪声的平均声压级降低2 dB。
中图分类号:
周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121.
Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures[J]. CIESC Journal, 2023, 74(S1): 113-121.
试验参数 | 仪器 | 量程 | 精度 |
---|---|---|---|
质量流量 | 科氏流量计(E+H) | 0~250 kg/h | +0.5% |
温度 | 铠装热电偶(OMEGA) | -200~800 ℃ | ±0.1℃ |
压力 | 压力变送器(罗斯蒙特) | 0~10 MPa | ±0.075% |
声压级 | 传声器(BSWA MPA201) | 30~80 dB | ±0.5 dB |
制冷剂干度 | — | 0.02~0.4 | ±2.6% |
噪声频率 | — | 2000~6000 Hz | — |
表1 直接测量参数及间接计算参数的不确定度
Table 1 Uncertainties of direct measurements and experimental parameters
试验参数 | 仪器 | 量程 | 精度 |
---|---|---|---|
质量流量 | 科氏流量计(E+H) | 0~250 kg/h | +0.5% |
温度 | 铠装热电偶(OMEGA) | -200~800 ℃ | ±0.1℃ |
压力 | 压力变送器(罗斯蒙特) | 0~10 MPa | ±0.075% |
声压级 | 传声器(BSWA MPA201) | 30~80 dB | ±0.5 dB |
制冷剂干度 | — | 0.02~0.4 | ±2.6% |
噪声频率 | — | 2000~6000 Hz | — |
项目 | Qm=80 kg/h x=0.02 | Qm=40 kg/h x=0.05 | Qm=40 kg/h x=0.2 | Qm=40 kg/h x=0.4 |
---|---|---|---|---|
实验照片 | ![]() | ![]() | ![]() | ![]() |
示意图 | ![]() | ![]() | ![]() | ![]() |
流型特征 | 泡状流 | 弹状流 | 搅浑流 | 环状流 |
表2 节流阀进口处的四种典型流型
Table 2 Four typical flow patterns at the valve inlet
项目 | Qm=80 kg/h x=0.02 | Qm=40 kg/h x=0.05 | Qm=40 kg/h x=0.2 | Qm=40 kg/h x=0.4 |
---|---|---|---|---|
实验照片 | ![]() | ![]() | ![]() | ![]() |
示意图 | ![]() | ![]() | ![]() | ![]() |
流型特征 | 泡状流 | 弹状流 | 搅浑流 | 环状流 |
项目 | 仿真值/ dB | 实验值/ dB |
---|---|---|
优化前 | 54.1 | 51.8 |
优化后 | 52.3 | 49.5 |
表3 改善前后流动噪声声压级的仿真与实验值对比
Table 3 Comparison of simulation and experimental values of flow noise SPL before and after improvement
项目 | 仿真值/ dB | 实验值/ dB |
---|---|---|
优化前 | 54.1 | 51.8 |
优化后 | 52.3 | 49.5 |
1 | 蒋贤国, 王永琳, 王树涛, 等. 空调室内机冷媒流动噪声产生的原因和消除办法[J]. 家电科技, 2016(S1): 34-36. |
Jiang X G, Wang Y L, Wang S T, et al. Analysis and solution of refrigerant circuitry for indoor air conditioning[J]. Journal of Appliance Science & Technology, 2016(S1): 34-36. | |
2 | Fang L, Liang Y J, Lu Q H, et al. Flow noise characterization of gas-liquid two-phase flow based on acoustic emission[J]. Measurement, 2013, 46: 3887-3897. |
3 | 舒卫民, 刘伟, 莫平辉. 空调噪声舒适性评价的探讨[J]. 家电科技, 2008, 5: 48. |
Shu W M, Liu W, Mo P H. Discussion on noise comfort evaluation of air conditioning[J]. Journal of Appliance Science & Technology, 2008, 5: 48. | |
4 | Strasberg M. Gas bubbles as sources of sound in liquids[J]. The Journal of the Acoustical Society of America, 1956, 28: 20-26. |
5 | Xia Y, Liu Y, Liu Y, et al. Experimental study on reducing the noise of horizontal household freezers[J]. Applied Thermal Engineering, 2014, 68(1/2): 107-114. |
6 | Han H S, Jeong W B, Kim M S, et al. Analysis of the root causes of refrigerant-induced noise in refrigerators[J]. Journal of Mechanical Science and Technology, 2009, 23(12): 3245-3256. |
7 | 陈绍林, 吴俊鸿, 段亮. 空调系统制冷剂压力脉动产生的噪声分析及对策[J]. 制冷与空调, 2011, 11(2): 49-52. |
Chen S L, Wu J H, Duan L. Noise analysis and solutions for air-conditioning system due to refrigerant pressure fluctuation[J]. Refrigeration and Air-conditioning, 2011, 11(2): 49-52. | |
8 | 杨元龙. 船舶凝水调节管道新型节流孔板设计研究[J]. 化工学报, 2015, 66(S2): 103-108. |
Yang Y L. Design study of new throttle orifice applying to marine condensation regulating pipeline[J]. CIESC Journal, 2015, 66(S2): 103-108. | |
9 | Tatsumi K. Study on noise caused by slug flow through a capillary tube (in Japanese)[J]. Transactions of the Japan Society of Mechanical Engineers: Series B, 1997, 64(611): 2392-2397. |
10 | 徐占松, 韩玉帅, 曾向杰. 短管节流阀替代毛细管在家用空调器上的研究和应用[J]. 家电科技, 2007, 12: 62-65. |
Xu Z S, Han Y S, Zeng X J. Research and application of shot tube throttle valve instead of capillary tube in room air conditioner[J]. Journal of Appliance Science & Technology, 2007, 12: 62-65. | |
11 | Singh G M, Rodarte E, Miller N R, et al. Noise generation from expansion devices in refrigerant: ACRC TR-152[R]. Urbana, Illinois: University of Illinois, 1999. |
12 | 周云龙, 陈听宽. 蒸发管内汽液两相流压力降型脉动集总参数非线性分析[J]. 化工学报, 1996, 47(4): 500-504. |
Zhou Y L, Chen T K. Lumped parameter nonlinear analysis of steam-liquid two phase flow pressure drop oscillation in evaporator tubes[J]. Journal of Chemical Industry and Engineering(China), 1996, 47(4): 500-504. | |
13 | Takushima A, Han H S, Jung W B. Reduction of the refrigerant-induced noise from the transition of flow pattern by decreasing tube diameter[J]. International Journal of Air-Conditioning and Refrigeration, 2009, 17(2): 37-44. |
14 | Zou J, Fu X, Du X W, et al. Cavitation in a non-circular opening spool valve with U-grooves. Proceedings of the institution of mechanical engineers[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2008, 222: 413-420. |
15 | Harrison M. An experimental study of single bubble cavitation noise[J]. The Journal of the Acoustical Society of America, 1952, 24: 776-782. |
16 | Jeong W B, Han H S, Mo J Y, et al. Experimental study of the effects of the cycle characteristics on the refrigerant-induced noise in system air-conditioner[J]. Journal of Mechanical Science and Technology, 2007, 21: 1112-1119. |
17 | Sun P, Fox D, Campbell K, et al. Auditory fatigue model applications to predict noise induced hearing loss in human and chinchilla[J]. Applied Acoustics, 2017, 119: 57-65. |
18 | 杨智辉, 刘益才, 刘振利, 等. 冰箱毛细管流动噪声的实验研究[J]. 制冷与空调, 2006, 6(4): 74-76. |
Yang Z H, Liu Y C, Liu Z L, et al. Experimental study on the flow noise of capillary tube in the refrigerator[J]. Refrigeration and Air-Conditioning, 2006, 6(4): 74-76. | |
19 | Liu Y, Dong Y, Zhao L. Comparison of noise calculation methods of air conditioning duct system used in China and USA[J]. Procedia Engineering, 2017, 205: 1592-1599. |
20 | Reethof G. Control valve and regulator noise generation, propagation, and reduction[J]. Noise Control Engineering, 1977, 9(2): 74-85. |
21 | Celik S, Nsofor E C. Studies on the flow-induced noise at the evaporator of a refrigerating system[J]. Applied Thermal Engineering, 2011, 31(14/15): 2485-2493. |
22 | Zhang Y Y, Elbel S. Experimental analysis to mitigate flow-induced noise in expansion devices[C]//International Refrigeration and Air Conditioning Conference. Purdue, 2018. |
23 | Hirakuni S, Nakayama M, Makino H, et al. Noise reduction technology with porous metal for refrigerant two-phase flow through the expansion valve[C]// International Refrigeration and Air Conditioning Conference. Purdue, 2004. |
24 | Ruebeling J, Grohmann S. Flow-induced noise generation at the outlet of a capillary tube[J]. International Journal of Refrigeration, 2020, 111: 188-196. |
25 | Han H S, Jeong W B, Min S K. Frequency characteristics of the noise of R600a refrigerant flowing in a pipe with intermittent flow pattern[J]. International Journal of Refrigeration, 2011, 34: 1497-1506. |
26 | Kim G, Lee J, Park J, et al. Flow visualization and noise measurement of R410A two-phase flow near electric expansion valve for heating cycle of multi-split air-source heat pump[J]. Applied Thermal Engineering, 2019, 157: 113712-113722. |
27 | Kim G, Song S. Noise reduction of refrigerant two-phase flow using flow conditioners near the electric expansion valve[J]. Journal of Mechanical Science and Technology, 2020, 34(2): 719-725. |
28 | Han H S, Jeong W B, Aoyama S, et al. Experimental analysis for reducing refrigerant-induced noise of 4-way cassette type air conditioner[J]. Journal of Mechanical Science and Technology, 2009, 23: 1456-1467. |
29 | Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. |
30 | Minnaert W K. On musical air-bubbles and the sounds of running water[J]. Philosophical Magazine, 1933, 16(104): 235-248. |
[1] | 刘博文, 邓帅, 李双俊, 赵力, 杜振宇, 陈丽锦. 变温吸附碳捕集系统能效性能实验研究[J]. 化工学报, 2020, 71(S1): 382-390. |
[2] | 汪彬, 李江道, 黄永华, 吴静怡, 王天祥, 雷刚. 节流参数对液氮贮箱热力排气系统运行特性的影响[J]. 化工学报, 2019, 70(S2): 101-107. |
[3] | 葛铭, 赵利杰, 戴维葆, 蔡培, 舒少辛, 杨海瑞, 吕俊复. 叉排三维外肋管的传热特性[J]. 化工学报, 2017, 68(10): 3733-3738. |
[4] | 刘新新, 叶建, 徐肖肖, 刘朝, 王开正, 李洪瑞, 白万金. 超临界CO2在水平螺旋管内的冷却换热特性[J]. 化工学报, 2016, 67(S2): 120-127. |
[5] | 张军, 臧晓刚, 张园春, 何宏舟, 陈怀民. 水下管道向下泄漏的羽/射流特性[J]. 化工学报, 2016, 67(12): 4969-4975. |
[6] | 陈双双, 纪馨, 林文胜. 中间流体气化器丙烷相变换热实验[J]. 化工学报, 2015, 66(S2): 192-197. |
[7] | 郑宝军, 殷勇高, 张小松. 压缩空气溶液深度除湿干燥方法及实验验证[J]. 化工学报, 2014, 65(z2): 52-57. |
[8] | 杨侠,杨清,吴艳阳,万攀,刘丰良. 电场作用下沸腾气泡行为实验[J]. 化工进展, 2014, 33(02): 319-322. |
[9] | 柴磊, 夏国栋, 李健, 周明正. 周期性扩缩微通道内气液两相流型及其演变特性[J]. 化工学报, 2013, 64(6): 2036-2042. |
[10] | 严建骏, 蒋军成, 王志荣. 连通容器内预混气体爆炸过程的实验研究 [J]. 化工学报, 2009, 60(1): 260-264. |
[11] | 张庆华,毛在砂,杨 超,赵承军. 搅拌反应器中液相混合时间研究进展 [J]. CIESC Journal, 2008, 27(10): 1544-. |
[12] | 殷勇高, 张小松. 基于热质传递解耦特性的溶液除湿过程传热传质系数(Ⅱ)实验与Le-hD分离测量法应用 [J]. 化工学报, 2008, 59(1): 12-18. |
[13] | 于景阳,张雪梅,韩莉果,张卫江,姜雅洁 . 规整填料塔吸收NOx过程的模拟和实验研究 [J]. CIESC Journal, 2005, 13(5): 713-716. |
[14] | JustinNijdam,GUOBaoyu,MaritzaValencia-Bejarano,TimothyLangrish. 单双喷嘴雾化凝聚的实验研究[J]. CIESC Journal, 2004, 12(6): 750-755. |
[15] | PatrickPERRE. 硬木中流体移动的双尺度多孔机理的依据(Ⅱ)描述实验结果的双尺度计算模型[J]. CIESC Journal, 2004, 12(6): 783-791. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 193
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 278
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||