化工学报 ›› 2023, Vol. 74 ›› Issue (S1): 32-44.DOI: 10.11949/0438-1157.20230835
金伟其1,2(), 吴月荣1, 王霞1,2, 李力1,2, 裘溯1,2, 袁盼2, 王铭赫2
收稿日期:
2023-05-05
修回日期:
2023-06-20
出版日期:
2023-06-05
发布日期:
2023-09-27
通讯作者:
金伟其
作者简介:
金伟其(1961—), 男,博士,教授,jinwq@bit.edu.cn
基金资助:
Weiqi JIN1,2(), Yuerong WU1, Xia WANG1,2, Li LI1,2, Su QIU1,2, Pan YUAN2, Minghe WANG2
Received:
2023-05-05
Revised:
2023-06-20
Online:
2023-06-05
Published:
2023-09-27
Contact:
Weiqi JIN
摘要:
化工园区工业气体泄漏防范预警是当前生产过程的重要环节,关系到安全、双碳达标、环境保护问题。本文在介绍工业气体泄漏常规单点检测、激光检测、红外成像检测等先进技术的基本原理和典型产品的基础上,分析了适合现场泄漏气云红外成像检测技术及其国产化装备特点,对实验室理论和关键技术突破后进一步实现工程化应用需要解决的关键技术进行了分析,对促进国内化工园区气体泄漏防范技术发展和装备推广具有意义。
中图分类号:
金伟其, 吴月荣, 王霞, 李力, 裘溯, 袁盼, 王铭赫. 化工园区工业气体泄漏气云红外成像检测技术与国产化装备进展[J]. 化工学报, 2023, 74(S1): 32-44.
Weiqi JIN, Yuerong WU, Xia WANG, Li LI, Su QIU, Pan YUAN, Minghe WANG. Progress in infrared imaging detection technology and domestic equipment for industrial gas leakage in chemical industry parks[J]. CIESC Journal, 2023, 74(S1): 32-44.
图4 危险气体泄漏红外成像检测原理[9](MBG,MC_leak,MC_noleak分别为背景辐射、有气体泄漏路径C层辐射和无气体泄漏路径C层辐射;TBG,TA,TB,TC分别为背景、A层大气、B层大气和C层大气温度;τA,τB,τC,τgas分别为A层、B层、C层和气体的透过率)
Fig.4 Principle of infrared imaging detection for dangerous gas leakage[9]
型号 | 工作波段/µm | 制冷 | 探测器 | 典型可探测气体 |
---|---|---|---|---|
GF304 | 8.0~8.6 | 制冷 | QWIP | 制冷剂 |
GF306 | 10.3~10.7 | 制冷 | QWIP | 六氟化硫等 |
GF300 | 3.2~3.4 | 制冷 | InSb | 甲烷等 |
GF320 | 3.2~3.4 | 制冷 | InSb | 甲烷等 |
GF346 | 4.52~4.76 | 制冷 | InSb | 一氧化碳等 |
G300a | 3.2~3.4 | 制冷 | InSb | 甲烷等 |
G300pt | 3.2~3.4 | 制冷 | InSb | 甲烷等 |
A6604 | 3.2~3.4 | 制冷 | InSb | 甲烷等 |
表1 Gas FindIR™系列的主要热成像检测仪
Table 1 The main thermal imaging detector of the Gas FindIR™ series
型号 | 工作波段/µm | 制冷 | 探测器 | 典型可探测气体 |
---|---|---|---|---|
GF304 | 8.0~8.6 | 制冷 | QWIP | 制冷剂 |
GF306 | 10.3~10.7 | 制冷 | QWIP | 六氟化硫等 |
GF300 | 3.2~3.4 | 制冷 | InSb | 甲烷等 |
GF320 | 3.2~3.4 | 制冷 | InSb | 甲烷等 |
GF346 | 4.52~4.76 | 制冷 | InSb | 一氧化碳等 |
G300a | 3.2~3.4 | 制冷 | InSb | 甲烷等 |
G300pt | 3.2~3.4 | 制冷 | InSb | 甲烷等 |
A6604 | 3.2~3.4 | 制冷 | InSb | 甲烷等 |
1 | 赵晓飞, 陈国兴. 从«政府工作报告»看行业热点[J]. 中国石油和化工, 2021(3): 14-23. |
Zhao X F, Chen G X. Viewing industry hotspots from “government work report”[J]. China Petroleum and Chemical Industry, 2021(3): 14-23. | |
2 | 迟晓铭, 肖安山, 朱亮, 等. 石化企业气体泄漏红外成像检测技术研究进展[J]. 安全、健康和环境, 2021, 21(2): 1-5. |
Chi X M, Xiao A S, Zhu L, et al. Research progress of infrared imaging detection technology for gas leakage in petrochemical enterprises[J]. Safety Health & Environment, 2021, 21(2): 1-5. | |
3 | 谭雨婷, 李家琨, 金伟其, 等. 气体泄漏的单点探测器与红外成像检测的灵敏度模拟分析[J]. 红外与激光工程, 2014, 43(8): 2489-2495. |
Tan Y T, Li J K, Jin W Q, et al. Model analysis of the sensitivity of single-point sensor and IRFPA detectors used in gas leakage detection[J]. Infrared and Laser Engineering, 2014, 43(8): 2489-2495. | |
4 | Vollmer M, Möllmann K P. Infrared Thermal Imaging[M]. John Wiley & Sons, 2017. |
5 | 李家琨, 金伟其, 王霞, 等. 气体泄漏红外成像检测技术发展综述[J]. 红外技术, 2014, 36(7): 513-520. |
Li J K, Jin W Q, Wang X, et al. Review of gas leak infrared imaging detection technology[J]. Infrared Technology, 2014, 36(7): 513-520 | |
6 | 袁盼, 谭竹嫣, 张旭, 等. 工业气体泄漏红外成像检测及差分光谱滤波检测方法研究[J]. 红外与激光工程, 2022, 51(8): 323-336. |
Yuan P, Tan Z Y, Zhang X, et al. Research on infrared imaging detection and differential spectrum filtering detection methods for industrial gas leakage[J]. Infrared and Laser Engineering, 2022, 51(8): 323-336. | |
7 | 汉威科技集团网[EB/OL]. [2023-06-08]. . |
Hanwei Electronics Group Corporation[EB/OL]. [2023-06-08]. | |
8 | 田野, 潘诚, 陈海艳. 天然气站场露天区域可燃气体泄漏检测技术研究[J]. 油气田地面工程, 2022, 41(3): 73-77. |
Tian Y, Pan C, Chen H Y. Research on combustible gas leakage detection technology in open air area of natural gas station[J]. Oil-Gas Field Surface Engineering, 2022, 41(3): 73-77. | |
9 | Flanigan D F. Limits of passive remote detection of hazardous vapors by computer simulation[C]//Aerospace/Defense Sensing and Controls. Proc SPIE 2763, Electro-Optical Technology for Remote Chemical Detection and Identification, Orlando, FL, USA. 1996, 2763: 117-127. |
10 | 李家琨. 气体泄漏被动式红外成像检测理论及方法研究[D]. 北京: 北京理工大学, 2015. |
Li J K. Research on the theory and method of passive gas leak infrared imaging detection[D]. Beijing: Beijing Institute of Technology, 2015. | |
11 | 张旭. 石油天然气泄漏被动红外成像检测理论与技术研究[D]. 北京: 北京理工大学, 2020. |
Zhang X. Research on theory and technology of passive infrared imaging detection for oil and natural gas leakage[D]. Beijing: Beijing Institute of Technology, 2020. | |
12 | Babikov Y L, Gordon I E, Mikhailenko S N, et al. HITRAN on the web —a new tool for HITRAN spectroscopic data manipulation[C] //Proc of the 12th International HITRAN Conference, 2012: 29-31. |
13 | 白廷柱, 金伟其. 光电成像原理与技术[M]. 北京: 北京理工大学出版社, 2006. |
Bai T Z, Jin W Q. Principle and Technology of Photoelectric Imaging[M]. Beijing: Beijing Institute of Technology Press, 2006. | |
14 | Furry D, Richards A, Lucier R, et al. Detection of volatile organic compounds (VOC's) with a spectrally filtered cooled mid-wave infrared camera[C]//Infra Mation 2005 Proceedings, 2005. |
15 | FLIR官网. 气体泄漏检测热像仪[EB/OL]. [2023-06-09]. [EB/OL]. [2023-06-09]. . |
16 | Mammen C H, Benson R G. Thermography camera configured for gas leak detection: US7649174[P]. 2010-01-19. |
17 | Malm H, Gamfeldt A, von Würtemberg R M, et al. High image quality type-Ⅱ superlattice detector for 3.3 μm detection of volatile organic compounds[J]. Infrared Physics & Technology, 2015, 70: 34-39. |
18 | 张旭, 金伟其, 李力, 等. 天然气泄漏被动式红外成像检测技术及系统性能评价研究进展[J]. 红外与激光工程, 2019, 48(S2): 8. |
Zhang X, Jin W Q, Li L, et al. Research progress on passive infrared imaging detection technology and system performance evaluation of natural gas leakage[J]. Infrared and Laser Engineering, 2019, 48(S2): 8. | |
19 | Sofradir Products[EB/OL]. [2019-01-05]. . |
20 | Oelrich B D, Crastes A, Underwood C I, et al. Low-cost mid-wave IR microsatellite imager concept based on uncooled technology[C]//Proc SPIE 5570, Sensors, Systems, and Next-Generation Satellites Ⅷ, 2004, 5570: 209-217. |
21 | Naranjo E, Baliga S, Bernascolle P. IR gas imaging in an industrial setting[C]// Thermosense XXXII. International Society for Optics and Photonics, 2010, 7661: 76610K. |
22 | 李家琨, 金伟其, 张旭, 等. 气体泄漏红外图像动态压缩及增强方法[J]. 光学学报, 2017, 37(1): 146-152. |
Li J K, Jin W Q, Zhang X, et al. Gas leak infrared image dynamic compression and enhancement method[J]. Acta Optica Sinica, 2017, 37(1): 146-152. | |
23 | 李家琨, 顿雄, 金明磊, 等. 宽波段气体泄漏红外成像检测系统设计[J]. 红外与激光工程, 2014, 43(6): 1966-1971. |
Li J K, Dun X, Jin M L, et al. Design of wide-band gas leak infrared imaging detection system[J]. Infrared and Laser Engineering, 2014, 43(6): 1966-1971. | |
24 | Wiecek P. A method for automatic gas detection using wide-band 3-14 µm bolometer camera[C]//Proceedings of the 2018 International Conference on Quantitative InfraRed Thermography. QIRT Council, 2018: 115-121. |
25 | Więcek P, Więcek B. Performance analysis of dual-band microbolometer camera for industrial gases detection[J]. Measurement Automation Monitoring, 2018, 4(64): 2450-2855. |
26 | FLIR GF77[EB/OL]. [2023-06-09]. . |
27 | Kester R T, Walker C, Hagen N. A real-time gas cloud imaging camera for fugitive emission detection and monitoring[C]//Imaging and Applied Optics Technical Papers. Monterey, California. Washington, D.C.: OSA, 2012: AW1B.1. |
28 | Hagen N, Kester R T, Morlier C G, et al. Video-rate spectral imaging of gas leaks in the longwave infrared[C]//SPIE Proceedings, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIV. Baltimore, Maryland, USA. SPIE, 2013: 871005. |
29 | Hagen N, Kester R T, Walker C. Real-time quantitative hydrocarbon gas imaging with the gas cloud imager (GCI)[C]//SPIE Proceedings, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIII. Baltimore, Maryland. SPIE, 2012: 83581J. |
30 | Gao L, Kester R T, Hagen N, et al. Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy[J]. Optics Express, 2010, 18(14): 14330-14344. |
31 | Hagen N A, Gao L S, Tkaczyk T S, et al. Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems[J]. Optical Engineering, 2012, 51(11): 111702. |
32 | Cabib D, Lavi M, Orr H. Revival of circular variable filters[C]//Proc SPIE 7835, Electro-Optical Remote Sensing, Photonic Technologies, and Applications Ⅳ, 2010, 7835: 242-251. |
33 | Cabib D, Orr H. Circular Variable Filters (CVF) at CI: progress and new performance[C]//Proc SPIE 8542, Electro-Optical Remote Sensing, Photonic Technologies, and Applications Ⅵ, 2012, 8542: 266-276. |
34 | Cabib D, Lavi M, Gil A, et al. A Long Wave Infrared (LWIR) spectral imager (7.7 to 12.3 microns) based on cooled detector array and high resolution Circular Variable Filter (CVF)[C]//Proc SPIE 8896, Electro-Optical and Infrared Systems: Technology and Applications X, 2013, 8896: 191-202. |
35 | Gagnon M A, Tremblay P, Savary S, et al. Direct imaging of shale gas leaks using passive thermal infrared hyperspectral imaging[C]//2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Fort Worth, TX, USA. IEEE, 2017: 4479-4481. |
36 | Gagnon M A, Tremblay P, Savary S, et al. Airborne midwave and longwave infrared hyperspectral imaging of gases[C]//Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications V. International Society for Optics and Photonics, 2014, 9263: 926312.. |
37 | Huot A, Gagnon M A, Jahjah K A, et al. Time-resolved multispectral imaging of combustion reaction[C]//Thermosense: Thermal Infrared Applications XXXVII. International Society for Optics and Photonics, 2015, 9485: 94851C. |
38 | Sakagami T, Anzai H, Kubo S. Development of a gas leak detection method based on infrared spectrum imaging utilizing microbolometer camera[C]//SPIE Proceedings. Thermosense: Thermal Infrared Applications XXXIII. Orlando, Florida, USA. SPIE, 2011: 80130C. |
[1] | 李鹏, 王迪, 李品烨, 吕妍. 变温条件下水蒸气激光检测浓度反演及修正[J]. 化工学报, 2020, 71(S2): 161-165. |
[2] | 周彩荣 王海峰 石晓华 高玉国 蒋登高. 反式-1,2-环己二醇在乙酸甲酯与水混合溶剂中的溶解度 [J]. CIESC Journal, 2007, 58(4): 810-813. |
[3] | 任国宾;王静康;尹秋响;徐昭 . 人工神经网络在半水盐酸帕罗西汀溶解度预测中的应用 [J]. CIESC Journal, 2006, 57(4): 853-860. |
[4] | 周彩荣;蒋登高;王斐. 1,2-环己二醇溶解度的测定及关联 [J]. CIESC Journal, 2004, 55(9): 1412-1416. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 876
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 411
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||