化工学报 ›› 2024, Vol. 75 ›› Issue (4): 1118-1136.DOI: 10.11949/0438-1157.20231396
收稿日期:
2023-12-29
修回日期:
2024-02-02
出版日期:
2024-04-25
发布日期:
2024-06-06
通讯作者:
周寅宁
作者简介:
吴立盛(2000—),男,硕士研究生,15160310156@sjtu.edu.cn
基金资助:
Lisheng WU(), Jie LIU, Tiantian WANG, Zhenghong LUO, Yinning ZHOU()
Received:
2023-12-29
Revised:
2024-02-02
Online:
2024-04-25
Published:
2024-06-06
Contact:
Yinning ZHOU
摘要:
开环易位聚合(ROMP)为烯烃聚合物的制备提供了一种精确而高效的方法,可制备不同拓扑结构的功能性热塑性烯烃聚合物材料。热塑性烯烃聚合物尽管可以在高温下熔融再加工,但其较低的力学性能和耐热性能限制了其在极端条件下的使用寿命。通过固化交联改性则可以大大改善材料的力学性能等,但也为废旧材料的回收再利用带来了困难。为克服上述局限,构建含有动态键的烯烃聚合物交联网络引起了广泛关注,该类聚合物在提升力学等性能的同时也赋予了其可重复加工的能力。本文聚焦于通过开环易位聚合合成不同拓扑结构的烯烃聚合物,并利用不同类型动态键对其进行动态交联改性的最新研究进展。并对该领域的发展现状和未来研究方向进行了总结。
中图分类号:
吴立盛, 刘杰, 王添添, 罗正鸿, 周寅宁. 开环易位烯烃聚合物的动态交联改性研究进展[J]. 化工学报, 2024, 75(4): 1118-1136.
Lisheng WU, Jie LIU, Tiantian WANG, Zhenghong LUO, Yinning ZHOU. Progress in dynamically crosslinked polyolefins derived from ring-opening metathesis polymerization[J]. CIESC Journal, 2024, 75(4): 1118-1136.
图2 氢键动态交联烯烃聚合物的合成途径和性质[20, 62-63]:(a)六点和三点氢键络合物;(b)牺牲氢键的可逆能量耗散和G2催化剂介导的烯烃复分解自愈合网络;(c)含酰胺氢键网络(ACON)和氢键阻断网络(BACON)的合成;(d) ABA型三嵌段环烯烃共聚物(A嵌段:2-脲基-4[1H]-嘧啶酮官能化的降冰片烯的均聚物;B嵌段:2-脲基-4[1H]-嘧啶酮官能化的降冰片烯和含柔性十二烷基酯侧链的降冰片烯的无规共聚物);(e) 拉伸时聚合物网络能量耗散过程机理
Fig.2 Synthetic pathways and properties of polyolefins dynamically crosslinked by hydrogen bonded[20, 62-63]: (a) six-point and three-point hydrogen bonded complexes; (b) reversible energy dissipative rupture of sacrificial hydrogen bonds in a G2-mediated self-healing olefin-containing network; (c) synthesis of the amid-containing CO network (ACON) and hydrogen-bond-blocked control network (BACON); (d) ABA type block cyclic olefin copolymer (A block: 2-ureido-4[1H]-pyrimidinone (UPy)-functionalized norbornene homopolymer; B block: 2-ureido-4[1H]-pyrimidinone (UPy)-functionalized norbornene random copolymer); (e) schematic graph for energy dissipative rupture of polymer network
图3 离子相互作用动态交联环烯烃聚合物的合成途径和性质[67-69]:(a)负载不同反离子的基于咪唑基团的降冰片烯共聚物;(b)样品自愈性能测试过程及机理示意图;(c)梯度共聚物的化学结构和拉伸弹性响应机理;(d)具有不同间隔段和尾部段长度的咪唑基降冰片烯共聚物的合成路线
Fig.3 Synthetic pathways and properties of cyclic olefin polymer dynamically crosslinked by ionic interaction[67-69]: (a) imidazolium-based norbornene copolymer with different counterions; (b) photographs showing the self-healing properties of samples and its mechanism under the testing process; (c) chemical structures of gradient copolymers and the mechanism for elastic response; (d) synthetic route of the imidazolium-based norbornene copolymers with different spacer and tail lengths
图4 主客体相互作用动态交联环烯烃聚合物的合成途径和性质[70]:(a) 超分子聚合物;(b) 共价聚合物;(c) 协同共价和超分子聚合物;(d) 三种聚合物的力学性能和动态性能对比
Fig.4 Synthetic pathways and properties of cyclic olefin polymer dynamically crosslinked by host-guest interaction[70]: (a) supramolecular polymers; (b) covalent polymers; (c) synergistic covalent and supramolecular polymers; (d) comparison of mechanical and dynamic properties of three polymers above
图5 双重分子间作用力动态交联环烯烃聚合物的合成途径和性质[72]:(a)双动态交联聚合物的合成路线;(b)拉伸时离子聚集体和稀疏UPy段耗散能量以及密集UPy段限制形变的机制;(c)近红外触发愈合过程的示意图
Fig.5 Synthetic pathways and properties of cyclic olefin polymer dynamically crosslinked by dual-molecular interaction[72]: (a) synthetic route of dual-cross-linked polymer; (b) schematic graph of dense UPy region limited deformation, while UPy dimers in sparse regions with weak ionic interaction can act as sacrificial bonds for energy dissipation; (c) schematic illustration of the NIR triggered healing process
图6 烯烃复分解动态交联烯烃聚合物的合成途径和性质[73]:(a)基于开环易位聚合的聚合物网络的解聚-再聚合循环示意图;(b)解聚温度与两种共聚单体比例的线性关系;(c)聚合物网络在25~55℃之间循环的储能模量
Fig.6 Synthetic pathways and properties of polyolefin dynamically crosslinked by olefin metathesis[73]: (a) schematic of the depolymerization-repolymerization cycle of network polymers based on ROMP; (b) depolymerization temperatures of copolymers depending on the ratios of two comonomers; (c) the storage modulus of sample which were first initiated at 55℃ and cycled between 25℃ and 55℃
图7 硼酸酯键动态交联烯烃聚合物的合成途径和性质[74-75]:(a) 改变邻位基团以调控硼酸酯交换动力学;(b) 硼酸酯动态交联烯烃聚合物的示意图;(c) 基于PE骨架的DCNA的合成;(d) 不同PE-AB掺入量的蠕变对比;(e) 动态共价网络可重加工示意图
Fig.7 Synthetic pathways and properties of polyolefins dynamically crosslinked by boronic ester[74-75]: (a) tuning neighboring group to control the exchange kinetics of boronic ester; (b) dynamic exchange of boronic ester crosslinkers affords olefin polymer; (c) synthesis of a DCNA based on the PE backbone; (d) creep tests of PE with different mass fractions of PE-AB; (e) schematic representation of dynamic covalent networks with reprocessability
图8 酯键和硅醚键动态交联环烯烃聚合物的合成途径和性质[22, 76]:(a) 基于酯交换的动态瓶刷聚合物的合成方案;(b) 含双官能硅醚的聚双环戊二烯的制备;(c) EtSi7与双环戊二烯共聚物在有无辛酸作用下的应力松弛曲线对比;(d) iPrSi7与双环戊二烯共聚物在有无辛酸作用下的应力松弛曲线对比;(e) 上述两种样品的应力松弛的Arrhenius关系图
Fig.8 Synthetic pathways and properties of cyclic olefin polymer dynamically crosslinked by ester bond and siloxane bond[22, 76]: (a) synthetic scheme for generating dynamic bottlebrush polymer networks that undergo transesterification; (b) preparation of polydicyclopentadiene (pDCPD) with bifunctional silyl ether; (c) stress relaxation curves of EtSi7 and pDCPD copolymer cured with and without octanoic acid; (d) stress-relaxation curves of iPrSi7 and pDCPD copolymer cured with and without octanoic acid; (e) Arrhenius plots of stress relaxation for these two samples
图9 乙烯胺酯键动态交联烯烃共聚物的化学途径和性质[77]:(a) 通过ROMP将两端为乙酰乙酸基团的CTA与COE共聚制备遥爪聚合物; (b) 利用遥爪聚合物与TREN合成动态交联网络
Fig.9 Synthetic pathways and properties of polyolefin dynamically crosslinked by vinylogous urethane bond[77]: (a) telechelic polymers by ROMP of COE in the presence of CTA bearing acetoacetate groups; (b) synthesis of dynamic crosslinked network using telechelic polymer and TREN
图10 双动态共价键交联环烯烃聚合物的合成途径和性质[78]:(a) 双动态共价交联网络的合成路线;(b) 两种可独立控制的拓扑变化路线示意图;(c) 羟基化合物与聚己内酯侧链酯交换的模型实验;(d) 不同紫外照射时长下异构化材料的DSC曲线;(e) 异构化材料的应力-应变曲线对比
Fig.10 Synthetic pathways and properties of cyclic olefin polymer dynamically crosslinked by dual-dynamic covalent bonds[78]: (a) synthetic scheme for the network crosslinked by dual-dynamic covalent bonds; (b) schematic illustration of the two independently controllable topological transformations; (c) transesterification between hydroxyl groups and polycaprolactone side chains; (d) DSC curves for the isomerized materials obtained with different UV irradiation time; (e) stress-strain curves of the isomerized materials
1 | Bielawski C W, Grubbs R H. Living ring-opening metathesis polymerization[J]. Progress in Polymer Science, 2007, 32(1): 1-29. |
2 | Slugovc C. The ring opening metathesis polymerisation toolbox[J]. Macromolecular Rapid Communications, 2004, 25(14): 1283-1297. |
3 | So L C, Faucher S, Zhu S P. Synthesis of low molecular weight polyethylenes and polyethylene mimics with controlled chain structures[J]. Progress in Polymer Science, 2014, 39(6): 1196-1234. |
4 | Truett W L, Johnson D R, Robinson I M, et al. Polynorbornene by coordination polymerization[J]. Journal of the American Chemical Society, 1960, 82(9): 2337-2340. |
5 | Jean-Louis Hérisson P, Chauvin Y. Catalyse de transformation des oléfines par les complexes du tungstène. Ⅱ. Télomérisation des oléfines cycliques en présence d'oléfines acycliques[J]. Die Makromolekulare Chemie, 1971, 141(1): 161-176. |
6 | Schrock R. Recent advances in olefin metathesis by molybdenum and tungsten imido alkylidene complexes[J]. Journal of Molecular Catalysis A: Chemical, 2004, 213(1): 21-30. |
7 | Choi T L, Grubbs R H. Controlled living ring-opening-metathesis polymerization by a fast-initiating ruthenium catalyst[J]. Angewandte Chemie International Edition, 2003, 42(15): 1743-1746. |
8 | Jeong H, Kozera D J, Schrock R R, et al. Z-selective ring-opening metathesis polymerization of 3-substituted cyclooctenes by monoaryloxide pyrrolide imido alkylidene (MAP) catalysts of molybdenum and tungsten[J]. Organometallics, 2013, 32(17): 4843-4850. |
9 | Rosebrugh L E, Marx V M, Keitz B K, et al. Synthesis of highly cis, syndiotactic polymers via ring-opening metathesis polymerization using ruthenium metathesis catalysts[J]. Journal of the American Chemical Society, 2013, 135(27): 10032-10035. |
10 | Schrock R R. Synthesis of stereoregular polymers through ring-opening metathesis polymerization[J]. Accounts of Chemical Research, 2014, 47(8): 2457-2466. |
11 | Yasir M, Liu P, Tennie I K, et al. Catalytic living ring-opening metathesis polymerization with Grubbs' second- and third-generation catalysts[J]. Nature Chemistry, 2019, 11: 488-494. |
12 | Hyatt M G, Walsh D J, Lord R L, et al. Mechanistic and kinetic studies of the ring opening metathesis polymerization of norbornenyl monomers by a Grubbs third generation catalyst[J]. Journal of the American Chemical Society, 2019, 141(44): 17918-17925. |
13 | Blosch S E, Alaboalirat M, Eades C B, et al. Solvent effects in grafting-through ring-opening metathesis polymerization[J]. Macromolecules, 2022, 55(9): 3522-3532. |
14 | Wang T T, Shi Y J, Li S, et al. Unraveling the compounded interplay of weakly and strongly coordinating ligands in G3-catalyzed living metathesis polymerization: toward well-defined polynorbornene at ambient temperature[J]. Macromolecules, 2023, 56(18): 7379-7388. |
15 | 姜啟亮, 陈琦, 姜付本, 等. 降冰片烯及其衍生物开环易位聚合的研究进展[J]. 材料导报, 2018, 32(7): 1165-1173. |
Jiang Q L, Chen Q, Jiang F B, et al. A review of the ring-opening metathesis polymerization involving norbornene or its derivatives[J]. Materials Review, 2018, 32(7): 1165-1173. | |
16 | Morita T, Maughon B R, Bielawski C W, et al. A ring-opening metathesis polymerization (ROMP) approach to carboxyl- and amino-terminated telechelic poly(butadiene)s[J]. Macromolecules, 2000, 33(17): 6621-6623. |
17 | Pitet L M, Hillmyer M A. Carboxy-telechelic polyolefins by ROMP using maleic acid as a chain transfer agent[J]. Macromolecules, 2011, 44(7): 2378-2381. |
18 | Nomura K, Abdellatif M M. Precise synthesis of polymers containing functional end groups by living ring-opening metathesis polymerization (ROMP): efficient tools for synthesis of block/graft copolymers[J]. Polymer, 2010, 51(9): 1861-1881. |
19 | Yang J X, Long Y Y, Pan L, et al. Spontaneously healable thermoplastic elastomers achieved through one-pot living ring-opening metathesis copolymerization of well-designed bulky monomers[J]. ACS Applied Materials & Interfaces, 2016, 8(19): 12445-12455. |
20 | Yoshida S, Ejima H, Yoshie N. Tough elastomers with superior self-recoverability induced by bioinspired multiphase design[J]. Advanced Functional Materials, 2017, 27(30): 1701670. |
21 | Allen M J, Wangkanont K, Raines R T, et al. ROMP from ROMP: a new approach to graft copolymer synthesis[J]. Macromolecules, 2009, 42(12): 4023-4027. |
22 | Self J L, Sample C S, Levi A E, et al. Dynamic bottlebrush polymer networks: self-healing in super-soft materials[J]. Journal of the American Chemical Society, 2020, 142(16): 7567-7573. |
23 | Varlas S, Hua Z, Jones J R, et al. Complementary nucleobase interactions drive the hierarchical self-assembly of core–shell bottlebrush block copolymers toward cylindrical supramolecules[J]. Macromolecules, 2020, 53(22): 9747-9757. |
24 | Fan J K, Ren N, Zhang C Y, et al. Synthesis of hyperbranched polyolefin with well-defined terminal functional group[J]. Polymer, 2022, 242: 124571. |
25 | Rylski A K, Cater H L, Mason K S, et al. Polymeric multimaterials by photochemical patterning of crystallinity[J]. Science, 2022, 378(6616): 211-215. |
26 | Zhao Y C, Rettner E M, Harry K L, et al. Chemically recyclable polyolefin-like multiblock polymers[J]. Science, 2023, 382(6668): 310-314. |
27 | Shim J S, Browne A W, Ahn C H. An on-chip whole blood/plasma separator with bead-packed microchannel on COC polymer[J]. Biomedical Microdevices, 2010, 12(5): 949-957. |
28 | Baek C, Kim J, Lee Y, et al. Fabrication and evaluation of cyclic olefin copolymer based implantable neural electrode[J]. IEEE Transactions on Bio-Medical Engineering, 2020, 67(9): 2542-2551. |
29 | Yamazaki M. Industrialization and application development of cyclo-olefin polymer[J]. Journal of Molecular Catalysis A: Chemical, 2004, 213(1): 81-87. |
30 | Zhang R, Madhavi V, Shaffer T D, et al. Cyclic olefin copolymers (COC)—excellent glass formers with low dynamic fragility[J]. Macromolecular Chemistry and Physics, 2022, 223(15): 2200065. |
31 | Zhao Y H, Zhang Y X, Cui L, et al. Cyclic olefin terpolymers with high refractive index and high optical transparency[J]. ACS Macro Letters, 2023, 12(3): 395-400. |
32 | Liu S C, Fan Y Q, Gao K X, et al. Fabrication of cyclo-olefin polymer-based microfluidic devices using CO2 laser ablation[J]. Materials Research Express, 2018, 5(9): 095305. |
33 | Abdulrahman A, Waqas W, Nahla A, et al. A review of cyclic olefin copolymer applications in microfluidics and microdevices[J]. Macromolecular Materials and Engineering, 2022, 307(8): 2200053. |
34 | Stagnaro P, Mancini G, Piccinini A, et al. Novel ethylene/norbornene copolymers as nonreleasing antioxidants for food-contact polyolefinic materials[J]. Journal of Polymer Science B Polymer Physics, 2013, 51(13): 1007-1016. |
35 | Losio S, Tritto I, Boggioni L, et al. Fully consistent terpolymeric non-releasing antioxidant additives for long lasting polyolefin packaging materials[J]. Polymer Degradation and Stability, 2017, 144: 167-175. |
36 | Janjua S, Hussain Z, Khan Z, et al. Biopolymer blended films of poly(butylene succinate)/cyclic olefin copolymer with enhanced mechanical strength for packaging applications[J]. Journal of Applied Polymer Science, 2021, 138(12): 50081. |
37 | Sabzekar M, Pourafshari Chenar M, Maghsoud Z, et al. Cyclic olefin polymer as a novel membrane material for membrane distillation applications[J]. Journal of Membrane Science, 2021, 621: 118845. |
38 | 赵阳, 李雪, 冯志明, 等. 降冰片烯类聚合物用于离子交换膜的研究进展[J]. 化工学报, 2015, 66(S1): 10-16. |
Zhao Y, Li X, Feng Z M, et al. Progress of ion exchange membrane based on poly(norbornene)s derivatives via ring-opening metathesis polymerization[J]. CIESC Journal, 2015, 66(S1): 10-16. | |
39 | Kushner A M, Gabuchian V, Johnson E G, et al. Biomimetic design of reversibly unfolding cross-linker to enhance mechanical properties of 3D network polymers[J]. Journal of the American Chemical Society, 2007, 129(46): 14110-14111. |
40 | Luo F, Sun T L, Nakajima T, et al. Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels[J]. Advanced Materials, 2015, 27(17): 2722-2727. |
41 | Kean Z S, Hawk J L, Lin S T, et al. Increasing the maximum achievable strain of a covalent polymer gel through the addition of mechanically invisible cross-links[J]. Advanced Materials, 2014, 26(34): 6013-6018. |
42 | Liu J, Tan C S Y, Yu Z Y, et al. Biomimetic supramolecular polymer networks exhibiting both toughness and self-recovery[J]. Advanced Materials, 2017, 29(10): 1604951. |
43 | Lu Y X, Tournilhac F, Leibler L, et al. Making insoluble polymer networks malleable via olefin metathesis[J]. Journal of the American Chemical Society, 2012, 134(20): 8424-8427. |
44 | Lu Y X, Guan Z B. Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon double bonds[J]. Journal of the American Chemical Society, 2012, 134(34): 14226-14231. |
45 | Montarnal D, Capelot M, Tournilhac F, et al. Silica-like malleable materials from permanent organic networks[J]. Science, 2011, 334(6058): 965-968. |
46 | Röttger M, Domenech T, van der Weegen R, et al. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis[J]. Science, 2017, 356(6333): 62-65. |
47 | 陈峰, 候宇坤, 赵骞. 一种硼酸酯动态交联环氧树脂的合成与性能[J]. 化工学报, 2019, 70(11): 4449-4456. |
Chen F, Hou Y K, Zhao Q. Synthesis and properties of epoxy resin crosslinked by dynamic boronic ester bonds[J]. CIESC Journal, 2019, 70(11): 4449-4456. | |
48 | Guerre M, Taplan C, Nicolaÿ R, et al. Fluorinated vitrimer elastomers with a dual temperature response[J]. Journal of the American Chemical Society, 2018, 140(41): 13272-13284. |
49 | 刘杰, 吴立盛, 李锦锦, 等. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 47(7): 3051-3057. |
Liu J, Wu L S, Li J J, et al. Preparation and properties of polyether-based vinylogous urethane reversible crosslinked polymers[J]. CIESC Journal, 2023, 47(7): 3051-3057. | |
50 | Nishimura Y, Chung J, Muradyan H, et al. Silyl ether as a robust and thermally stable dynamic covalent motif for malleable polymer design[J]. Journal of the American Chemical Society, 2017, 139(42): 14881-14884. |
51 | Wang A H, Niu H, He Z K, et al. Thermoreversible cross-linking of ethylene/propylene copolymer rubbers[J]. Polymer Chemistry, 2017, 8(31): 4494-4502. |
52 | Kar G P, Saed M O, Terentjev E M. Scalable upcycling of thermoplastic polyolefins into vitrimers through transesterification[J]. Journal of Materials Chemistry A, 2020, 8(45): 24137-24147. |
53 | Yang Y X, Huang L Y, Wu R Y, et al. Assembling of reprocessable polybutadiene-based vitrimers with high strength and shape memory via catalyst-free imine-coordinated boroxine[J]. ACS Applied Materials & Interfaces, 2020, 12(29): 33305-33314. |
54 | Liu S H, Liu X Y, He Z K, et al. Thermoreversible cross-linking of ethylene/propylene copolymers based on Diels-Alder chemistry: the cross-linking reaction kinetics[J]. Polymer Chemistry, 2020, 11(36): 5851-5860. |
55 | Maaz M, Riba-Bremerch A, Guibert C, et al. Synthesis of polyethylene vitrimers in a single step: consequences of graft structure, reactive extrusion conditions, and processing aids[J]. Macromolecules, 2021, 54(5): 2213-2225. |
56 | He Z K, Niu H, Liu L Y, et al. Elastomeric polyolefin vitrimer: dynamic imine bond cross-linked ethylene/propylene copolymer[J]. Polymer, 2021, 229: 124015. |
57 | Ahmadi M, Hanifpour A, Ghiassinejad S, et al. Polyolefins vitrimers: design principles and applications[J]. Chemistry of Materials, 2022, 34(23): 10249-10271. |
58 | Wang S J, Wang L, Wang B, et al. Facile preparation of recyclable cyclic polyolefin/polystyrene vitrimers with low dielectric loss based on semi-interpenetrating polymer networks for high-frequency copper-clad laminates[J]. Polymer, 2021, 233: 124214. |
59 | Xiao Y K, Liu P W, Wang W J, et al. Dynamically cross-linked polyolefin elastomers with highly improved mechanical and thermal performance[J]. Macromolecules, 2021, 54(22): 10381-10387. |
60 | Saed M O, Lin X Y, Terentjev E M. Dynamic semicrystalline networks of polypropylene with thiol-anhydride exchangeable crosslinks[J]. ACS Applied Materials & Interfaces, 2021, 13(35): 42044-42051. |
61 | Leone G, Palucci B, Zanchin G, et al. Dynamically cross-linked polyolefins via hydrogen bonds: tough yet soft thermoplastic elastomers with high elastic recovery[J]. ACS Applied Polymer Materials, 2022, 4(5): 3770-3778. |
62 | Nair K P, Breedveld V, Weck M. Complementary hydrogen-bonded thermoreversible polymer networks with tunable properties[J]. Macromolecules, 2008, 41(10): 3429-3438. |
63 | Neal J A, Mozhdehi D, Guan Z B. Enhancing mechanical performance of a covalent self-healing material by sacrificial noncovalent bonds[J]. Journal of the American Chemical Society, 2015, 137(14): 4846-4850. |
64 | Kang J, Son D, Wang G J N, et al. Tough and water-insensitive self-healing elastomer for robust electronic skin[J]. Advanced Materials, 2018, 30(13): 1706846. |
65 | Qin B, Zhang S, Sun P, et al. Tough and multi-recyclable cross-linked supramolecular polyureas via incorporating noncovalent bonds into main-chains[J]. Advanced Materials, 2020, 32(36): e2000096. |
66 | Chen L Y, You W, Wang J, et al. Enhancing the toughness and strength of polymers using mechanically interlocked hydrogen bonds[J]. Journal of the American Chemical Society, 2024, 146(1): 1109-1121. |
67 | Cui J, Nie F M, Yang J X, et al. Novel imidazolium-based poly(ionic liquid)s with different counterions for self-healing[J]. Journal of Materials Chemistry A, 2017, 5(48): 25220-25229. |
68 | Cui J, Ma Z, Pan L, et al. Self-healable gradient copolymers[J]. Materials Chemistry Frontiers, 2019, 3(3): 464-471. |
69 | Nie F M, Cui J, Zhou Y F, et al. Molecular-level tuning toward aggregation dynamics of self-healing materials[J]. Macromolecules, 2019, 52(14): 5289-5297. |
70 | Zhang Z M, Cheng L, Zhao J, et al. Synergistic covalent and supramolecular polymers for mechanically robust but dynamic materials[J]. Angewandte Chemie International Edition, 2020, 59(29): 12139-12146. |
71 | Deng J X, Bai R X, Zhao J, et al. Insights into the correlation of cross-linking modes with mechanical properties for dynamic polymeric networks[J]. Angewandte Chemie International Edition, 2023, 62(37): e202309058. |
72 | Nie F M, An C H, Cao D F, et al. Ru(Ⅱ) catalyst enables dynamic dual-cross-linked elastomers with near-infrared self-healing toward flexible electronics[J]. Advanced Functional Materials, 2022, 32(15): 2110616. |
73 | Liu H Y, Nelson A Z, Ren Y, et al. Dynamic remodeling of covalent networks via ring-opening metathesis polymerization[J]. ACS Macro Letters, 2018, 7(8): 933-937. |
74 | Cromwell O R, Chung J, Guan Z B. Malleable and self-healing covalent polymer networks through tunable dynamic boronic ester bonds[J]. Journal of the American Chemical Society, 2015, 137(20): 6492-6495. |
75 | Wang Z T, Gu Y, Ma M Y, et al. Strengthening polyethylene thermoplastics through a dynamic covalent networking additive based on alkylboron chemistry[J]. Macromolecules, 2021, 54(4): 1760-1766. |
76 | Husted K E L, Brown C M, Shieh P, et al. Remolding and deconstruction of industrial thermosets via carboxylic acid-catalyzed bifunctional silyl ether exchange[J]. Journal of the American Chemical Society, 2023, 145(3): 1916-1923. |
77 | Zheng S Q, Liu Y, Si G F, et al. Covalently crosslinked networks from telechelic polycyclooctene with reinforced properties[J]. Chinese Journal of Chemistry, 2023, 41(16): 2002-2009. |
78 | Miao W S, Yang B, Jin B J, et al. An orthogonal dynamic covalent polymer network with distinctive topology transformations for shape-and molecular architecture reconfiguration[J]. Angewandte Chemie, 2022, 134(11): e202109941. |
79 | Schlögl S, Trutschel M L, Chassé W, et al. Entanglement effects in elastomers: macroscopic vs microscopic properties[J]. Macromolecules, 2014, 47(9): 2759-2773. |
80 | Zhou H X, Schön E M, Wang M Z, et al. Crossover experiments applied to network formation reactions: improved strategies for counting elastically inactive molecular defects in PEG gels and hyperbranched polymers[J]. Journal of the American Chemical Society, 2014, 136(26): 9464-9470. |
81 | Wang J P, Lin T S, Gu Y W, et al. Counting secondary loops is required for accurate prediction of end-linked polymer network elasticity[J]. ACS Macro Letters, 2018, 7(2): 244-249. |
82 | Miyaji K, Sugiyama T, Ohashi T, et al. Study on homogeneity in sulfur cross-linked network structures of isoprene rubber by TD-NMR and AFM–zinc stearate system[J]. Macromolecules, 2020, 53(19): 8438-8449. |
83 | Wang R, Johnson J A, Olsen B D. Odd–even effect of junction functionality on the topology and elasticity of polymer networks[J]. Macromolecules, 2017, 50(6): 2556-2564. |
84 | De Keer L, Kilic K I, Van Steenberge P H M, et al. Computational prediction of the molecular configuration of three-dimensional network polymers[J]. Nature Materials, 2021, 20: 1422-1430. |
85 | Zhang K Y, Sun Y G, Yang H, et al. Investigations on thermomechanical and structure properties of pure and wet polyimine networks by molecular dynamics simulations[J]. Materials Today Communications, 2023, 36: 106758. |
[1] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[2] | 倪卓, 林煜豪, 黄苇颖, 林丽蓉. 环氧树脂微胶囊合成及其反应动力学[J]. 化工学报, 2018, 69(4): 1790-1798. |
[3] | 冯志明, 赵阳, 李雪, 谢晓峰, 柴春鹏, 罗运军. 一种新型聚降冰片烯类无规共聚物的合成与表征[J]. 化工学报, 2015, 66(S2): 439-444. |
[4] | 赵阳, 李雪, 冯志明, 赵玉彬, 谢晓峰, 柴春鹏, 罗运军. 降冰片烯类聚合物用于离子交换膜的研究进展[J]. CIESC Journal, 2015, 66(S1): 10-16. |
[5] | 李海燕,张丽冰,李杰,王俊. 外援型自修复聚合物材料研究进展[J]. 化工进展, 2014, 33(01): 133-139. |
[6] | 李海燕,张丽冰,王 俊. 本征型自修复聚合物材料研究进展[J]. 化工进展, 2012, 31(07): 1549-1554. |
[7] | 胡剑峰,夏正斌,司徒粤,陈焕钦. MF包封DCPD自修复微胶囊的合成 [J]. CIESC Journal, 2010, 61(11): 2978-2984. |
[8] | 胡剑峰, 夏正斌, 司徒粤, 陈焕钦. 脲醛树脂包覆双环戊二烯微胶囊的力学性能 [J]. 化工学报, 2010, 61(10): 2738-2742. |
[9] | 张伟, 辛毅, 张纾, 王红美, 于鹤龙. 自修复微胶囊制备及微纳力学性能 [J]. 化工学报, 2008, 59(6): 1595-1599. |
[10] | 乔吉超,胡小玲,管 萍. 自修复聚合物材料用微胶囊的研究进展 [J]. CIESC Journal, 2006, 25(12): 1405-. |
[11] | 田薇;王新厚;潘强;毛志平. 自修复聚合物材料用微胶囊 [J]. CIESC Journal, 2005, 56(6): 1138-1140. |
[12] | 刘剑平,宋诗哲,唐子龙. 304SS/NaCl体系中环己胺的缓蚀作用 [J]. CIESC Journal, 1999, 50(2): 216-221. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 149
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 308
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||