化工学报 ›› 2025, Vol. 76 ›› Issue (1): 1-17.DOI: 10.11949/0438-1157.20240790
收稿日期:
2024-07-13
修回日期:
2024-08-19
出版日期:
2025-01-25
发布日期:
2025-02-08
通讯作者:
邹吉军
作者简介:
邹吉军(1978—),男,博士,教授,jj_zou@tju.edu.cn
基金资助:
Jijun ZOU(), Baohong LIU, Chengxiang SHI, Lun PAN, Xiangwen ZHANG
Received:
2024-07-13
Revised:
2024-08-19
Online:
2025-01-25
Published:
2025-02-08
Contact:
Jijun ZOU
摘要:
木质纤维素是自然界中储量丰富的生物质资源,其中的半纤维素和纤维素经水解、脱水后可得到两种重要的平台化学品——糠醛和5-羟甲基糠醛,而它们通过加氢等方法可获得其他的平台化学品。将这些平台化学品进行碳-碳偶联,能够得到C8以上的含氧化合物,再通过加氢脱氧得到长链烷烃,经过后续处理用作航空煤油等,因此,碳-碳偶联及加氢脱氧是综纤维素衍生物转化合成燃料的关键。首先综述了用于两种重要的碳链增长反应(羟醛缩合与羟基烷基化/烷基化)的非均相催化剂及其催化机理,主要包括用于催化羟醛缩合反应的碱性催化剂、酸性催化剂和酸碱协同催化剂,以及用于催化羟基烷基化/烷基化反应的酸性催化剂,然后对后续加氢脱氧过程的催化剂进行了简要介绍,最后对未来催化剂发展方向进行了展望。
中图分类号:
邹吉军, 刘宝宏, 史成香, 潘伦, 张香文. 综纤维素衍生物转化合成生物航空燃料的非均相催化剂研究进展[J]. 化工学报, 2025, 76(1): 1-17.
Jijun ZOU, Baohong LIU, Chengxiang SHI, Lun PAN, Xiangwen ZHANG. Research progress of heterogeneous catalysts for conversion of holocellulose derivatives into bio-aviation fuels[J]. CIESC Journal, 2025, 76(1): 1-17.
图3 (a)水滑石结构及其记忆效应[33];(b)水滑石XRD谱图[36];(c)La2O2CO3-ZnO-Al2O3催化机理[45]
Fig.3 (a) The structure and memory effect of hydrotalcite[33]; (b) The XRD patterns of hydrotalcite[36]; (c) The catalytic mechanism of La2O3-ZnO-Al2O3[45]
图4 (a) MCM系列催化剂合成过程及结构[53];(b) Sn-MFI及Sn-Beta催化产物分布及形貌差别[54];(c) Zr-SiO2催化机理[58];(d) N—B—O和O—B—O活性位点差别[59]
Fig.4 (a) The synthesis process and structure of MCM catalysts[53]; (b) The product distribution and morphological difference of Sn-MFI and Sn-Beta[54]; (c) The catalytic mechanism of Zr-SiO2[58]; (d) The difference of N—B—O and O—B—O active sites[59]
图5 (a)Al-ZrO2催化剂的CO2-TPD和NH3-TPD图[68];(b)ZrAPOs催化机理[70]
Fig.5 (a) The CO2-TPD and NH3-TPD profiles of Al-ZrO2 catalyst[68]; (b) The catalytic mechanism of ZrAPOs[70]
图6 (a)2-甲基呋喃和羰基化合物的反应;(b)SO42-/TiO2催化机理[81];(c)水热焦合成过程[85];(d)Al-MSS具有的优势[90]
Fig.6 (a) The reaction of 2-methylfuran and carbonyl compounds; (b) The catalytic mechanism of ZrAPOs[81]; (c) The synthesis process of hydrochar[85]; (d) The advantages of Al-MSS[90]
图7 (a)含氧化合物的加氢脱氧过程;(b)Pd/NbOPO4催化效果[92];(c)Pd-Ru/HAP催化效果[96];(d)Pd-Cu/SiO2催化效果[98]
Fig.7 (a) The hydrodeoxygenation process of oxygenated compounds; (b) The catalytic effect of Pd/NbOPO4[92]; (c) The catalytic effect of Pd-Ru/HAP[96]; (d) The catalytic effect of Pd-Cu/SiO2[98]
1 | Shen Z S, Wang W, Pan L, et al. Ni5Fe5/Al2O3 catalytic hydrogenolysis of lignin: mechanism investigation and selectivity regulation[J]. Green Chemistry, 2023, 25(19): 7782-7793. |
2 | Shen Z S, Shi C X, Liu F, et al. Advances in heterogeneous catalysts for lignin hydrogenolysis[J]. Advanced Science, 2024, 11(1): e2306693. |
3 | Käldström M, Meine N, Farès C, et al. Fractionation of 'water-soluble lignocellulose' into C5/C6 sugars and sulfur-free lignins[J]. Green Chemistry, 2014, 16(5): 2454-2462. |
4 | Sadula S, Oesterling O, Nardone A, et al. One-pot integrated processing of biopolymers to furfurals in molten salt hydrate: understanding synergy in acidity[J]. Green Chemistry, 2017, 19(16): 3888-3898. |
5 | Zhao X L, Li S, Hu Y Z, et al. Synthesis of long chain alkanes via aldol condensation over modified chitosan catalyst and subsequent hydrodeoxygenation[J]. Chemical Engineering Journal, 2022, 428: 131368. |
6 | Liu Y N, Nie G K, Yu S T, et al. Water-tolerant phosphotungstic acid catalyst for controllable synthesis of high-performance biojet fuel[J]. Chemical Engineering Science, 2021, 238: 116592. |
7 | Deng Q, Nie G K, Pan L, et al. Highly selective self-condensation of cyclic ketones using MOF-encapsulating phosphotungstic acid for renewable high-density fuel[J]. Green Chemistry, 2015, 17(8): 4473-4481. |
8 | Nie G K, Wang H Y, Li Q, et al. Co-conversion of lignocellulosic derivatives to jet fuel blending by an efficient hydrophobic acid resin[J]. Applied Catalysis B: Environmental, 2021, 292: 120181. |
9 | Han P J, Nie G K, Xie J J, et al. Synthesis of high-density biofuel with excellent low-temperature properties from lignocellulose-derived feedstock[J]. Fuel Processing Technology, 2017, 163: 45-50. |
10 | Xie J J, Zhang X W, Liu Y K, et al. Synthesis of high-density liquid fuel via Diels-Alder reaction of dicyclopentadiene and lignocellulose-derived 2-methylfuran[J]. Catalysis Today, 2019, 319: 139-144. |
11 | Yeh J Y, Chen S S, Li S C, et al. Diels-Alder conversion of acrylic acid and 2, 5-dimethylfuran to para-xylene over heterogeneous Bi-BTC metal-organic framework catalysts under mild conditions[J]. Angewandte Chemie International Edition, 2021, 60(2): 624-629. |
12 | Banu S F, Indira M, Sreeshitha M, et al. Highly efficient N-heterocyclic carbene precursor from sterically hindered benzimidazolium salt for benzoin condensation[J]. ChemistrySelect, 2024, 9(17): e202401297. |
13 | Tang C H, Wang W, Luo G Y, et al. Carbene-catalyzed activation of C—Si bonds for chemo- and enantioselective cross Brook-Benzoin reaction[J]. Angewandte Chemie International Edition, 2022, 61(34): e202206961. |
14 | van den Bosch S, Schutyser W, Koelewijn S F, et al. Tuning the lignin oil OH-content with Ru and Pd catalysts during lignin hydrogenolysis on birch wood[J]. Chemical Communications, 2015, 51(67): 13158-13161. |
15 | Parsell T, Yohe S, Degenstein J, et al. A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass[J]. Green Chemistry, 2015, 17(3): 1492-1499. |
16 | van den Bosch S, Renders T, Kennis S, et al. Integrating lignin valorization and bio-ethanol production: on the role of Ni-Al2O3 catalyst pellets during lignin-first fractionation[J]. Green Chemistry, 2017, 19(14): 3313-3326. |
17 | Ye L, Han Y W, Wang X T, et al. Recent progress in furfural production from hemicellulose and its derivatives: conversion mechanism, catalytic system, solvent selection[J]. Molecular Catalysis, 2021, 515: 111899. |
18 | Yao Y Y, Chen S X, Zhang M. Sustainable approaches to selective conversion of cellulose into 5-hydroxymethylfurfural promoted by heterogeneous acid catalysts: a review[J]. Frontiers in Chemistry, 2022, 10: 880603. |
19 | Lu Y C, He Q, Peng Q, et al. Directional synthesis of furfural compounds from holocellulose catalyzed by sulfamic acid[J]. Cellulose, 2021, 28(13): 8343-8354. |
20 | Fan G Z, Chen Y, Lu Y C, et al. Co-production of 5-hydroxymethyl furfural and furfural from holocellulose over UiO-66-derived acid-base catalysts[J]. Chemical Engineering Science, 2023, 276: 118768. |
21 | Faba L, Díaz E, Ordóñez S. Aqueous-phase furfural-acetone aldol condensation over basic mixed oxides[J]. Applied Catalysis B: Environmental, 2012, 113: 201-211. |
22 | West R M, Liu Z Y, Peter M, et al. Liquid alkanes with targeted molecular weights from biomass-derived carbohydrates[J]. ChemSusChem, 2008, 1(5): 417-424. |
23 | Amarasekara A S, Singh T B, Larkin E, et al. NaOH catalyzed condensation reactions between levulinic acid and biomass derived furan-aldehydes in water[J]. Industrial Crops and Products, 2015, 65: 546-549. |
24 | Xie J W, Zhang L, Zhang X W, et al. Synthesis of high-density and low-freezing-point jet fuel using lignocellulose-derived isophorone and furanic aldehydes[J]. Sustainable Energy & Fuels, 2018, 2(8): 1863-1869. |
25 | Deng Q, Xu J S, Han P J, et al. Efficient synthesis of high-density aviation biofuel via solvent-free aldol condensation of cyclic ketones and furanic aldehydes[J]. Fuel Processing Technology, 2016, 148: 361-366. |
26 | Liang G F, Wang A Q, Zhao X C, et al. Selective aldol condensation of biomass-derived levulinic acid and furfural in aqueous-phase over MgO and ZnO[J]. Green Chemistry, 2016, 18(11): 3430-3438. |
27 | Li M M, Xu X, Gong Y T, et al. Ultrafinely dispersed Pd nanoparticles on a CN@MgO hybrid as a bifunctional catalyst for upgrading bioderived compounds[J]. Green Chemistry, 2014, 16(9): 4371-4377. |
28 | Chen F, Li N, Li S S, et al. Solvent-free synthesis of C9 and C10 branched alkanes with furfural and 3-pentanone from lignocellulose[J]. Catalysis Communications, 2015, 59: 229-232. |
29 | Xu Q Q, Sheng X R, Li N, et al. Ball-milling: a productive, economical, and widely applicable method for condensation of biomass-derived aldehydes and ketones at mild temperatures[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(24): 8232-8237. |
30 | Martínez-Ortiz M D, Lima E, Lara V, et al. Structural and textural evolution during folding of layers of layered double hydroxides[J]. Langmuir, 2008, 24(16): 8904-8911. |
31 | Hora L, Kelbichová V, Kikhtyanin O, et al. Aldol condensation of furfural and acetone over MgAl layered double hydroxides and mixed oxides[J]. Catalysis Today, 2014, 223: 138-147. |
32 | Hora L, Kikhtyanin O, Čapek L, et al. Comparative study of physico-chemical properties of laboratory and industrially prepared layered double hydroxides and their behavior in aldol condensation of furfural and acetone[J]. Catalysis Today, 2015, 241: 221-230. |
33 | Tampieri A, Russo C, Marotta R, et al. Microwave-assisted condensation of bio-based hydroxymethylfurfural and acetone over recyclable hydrotalcite-related materials[J]. Applied Catalysis B: Environmental, 2021, 282: 119599. |
34 | Kikhtyanin O, Tišler Z, Velvarská R, et al. Reconstructed Mg-Al hydrotalcites prepared by using different rehydration and drying time: physico-chemical properties and catalytic performance in aldol condensation[J]. Applied Catalysis A: General, 2017, 536: 85-96. |
35 | Parejas A, Cosano D, Hidalgo-Carrillo J, et al. Aldol condensation of furfural with acetone over Mg/Al mixed oxides. Influence of water and synthesis method[J]. Catalysts, 2019, 9(2): 203. |
36 | Tišler Z, Vondrová P, Peroutková K, et al. Influence of water on the production of liquid fuel intermediates from furfural via aldol condensation over MgAl catalyst[J]. Processes, 2023, 11(1): 261. |
37 | Kikhtyanin O, Korolova V, Spencer A, et al. On the influence of acidic admixtures in furfural on the performance of MgAl mixed oxide catalysts in aldol condensation of furfural and acetone[J]. Catalysis Today, 2021, 367: 248-257. |
38 | Kikhtyanin O, Čapek L, Tišler Z, et al. Physico-chemical properties of MgGa mixed oxides and reconstructed layered double hydroxides and their performance in aldol condensation of furfural and acetone[J]. Frontiers in Chemistry, 2018, 6: 176. |
39 | Jaroslav K, Jiří K, Uliana A, et al. Influences of magnesium content in rehydrated mixed oxides on furfural conversion[J]. Catalysts, 2020, 10(12): 1484. |
40 | Faba L, Díaz E, Ordóñez S. Improvement on the catalytic performance of Mg-Zr mixed oxides for furfural-acetone aldol condensation by supporting on mesoporous carbons[J]. ChemSusChem, 2013, 6(3): 463-473. |
41 | Smoláková L, Frolich K, Kocík J, et al. Surface properties of hydrotalcite-based Zn(Mg)Al oxides and their catalytic activity in aldol condensation of furfural with acetone[J]. Industrial & Engineering Chemistry Research, 2017, 56(16): 4638-4648. |
42 | Smoláková L, Dubnová L, Kocík J, et al. In-situ characterization of the thermal treatment of Zn-Al hydrotalcites with respect to the formation of Zn/Al mixed oxide active in aldol condensation of furfural[J]. Applied Clay Science, 2018, 157: 8-18. |
43 | Dubnová L, Smoláková L, Kikhtyanin O, et al. The role of ZnO in the catalytic behaviour of Zn-Al mixed oxides in aldol condensation of furfural with acetone[J]. Catalysis Today, 2021, 379: 181-191. |
44 | Li L P, Fang Z, Kong X, et al. Synthesis of jet fuel intermediates via aldol condensation of biomass-derived furfural with lanthanide catalyst[J]. Molecular Catalysis, 2021, 515: 111893. |
45 | Kong X, Wei X J, Li L P, et al. Production of liquid fuel intermediates from furfural via aldol condensation over La2O2CO3-ZnO-Al2O3 catalyst[J]. Catalysis Communications, 2021, 149: 106207. |
46 | Desai D S, Yadav G D. Green synthesis of furfural acetone by solvent-free aldol condensation of furfural with acetone over La2O3-MgO mixed oxide catalyst[J]. Industrial & Engineering Chemistry Research, 2019, 58(35): 16096-16105. |
47 | Lee H J, Choi I H, Hwang K R. Production of jet-fuel range precursors from carbonyl model compounds in aqueous-phase pyrolysis oil of wood over La-based mixed oxides[J]. Catalysis Communications, 2022, 169: 106471. |
48 | 齐学振, 谢敏慧, 林绍杰, 等. K+/CaO催化糠醛与甲基异丁基酮缩合制备生物航空燃料中间体[J]. 林产化学与工业, 2016, 36(6): 35-40. |
Qi X Z, Xie M H, Lin S J, et al. Production of bio-aviation fuel intermediates by aldol condensation of furfural and methyl isobutyl ketone over K+/CaO[J]. Chemistry and Industry of Forest Products, 2016, 36(6): 35-40. | |
49 | Fang X W, Wang Z, Song W L, et al. Aldol condensation of furfural with acetone over Ca/ZSM-5 catalyst with lower dosages of water and acetone[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 108: 16-22. |
50 | 黄晓明, 章青, 王铁军, 等. MgO/NaY催化糠醛和丙酮合成航空燃料中间体的性能研究[J]. 燃料化学学报, 2012, 40(8): 973-978. |
Huang X M, Zhang Q, Wang T J, et al. Production of jet fuel intermediates from furfural and acetone by aldol condensation over MgO/NaY[J]. Journal of Fuel Chemistry and Technology, 2012, 40(8): 973-978. | |
51 | Huang R J, Chang J, Choi H, et al. Furfural upgrading by aldol condensation with ketones over solid-base catalysts[J]. Catalysis Letters, 2022, 152(12): 3833-3842. |
52 | Ao L, Zhao W, Guan Y S, et al. Efficient synthesis of C15 fuel precursor by heterogeneously catalyzed aldol-condensation of furfural with cyclopentanone[J]. RSC Advances, 2019, 9(7): 3661-3668. |
53 | Kikhtyanin O, Chlubná P, Jindrová T, et al. Peculiar behavior of MWW materials in aldol condensation of furfural and acetone[J]. Dalton Transactions, 2014, 43(27): 10628-10641. |
54 | Su M X, Li W Z, Zhang T W, et al. Production of liquid fuel intermediates from furfural via aldol condensation over Lewis acid zeolite catalysts[J]. Catalysis Science & Technology, 2017, 7(16): 3555-3561. |
55 | Li W Z, Su M X, Yang T, et al. Preparation of two different crystal structures of cerous phosphate as solid acid catalysts: their different catalytic performance in the aldol condensation reaction between furfural and acetone[J]. RSC Advances, 2019, 9(30): 16919-16928. |
56 | Kikhtyanin O, Kubička D, Čejka J. Toward understanding of the role of Lewis acidity in aldol condensation of acetone and furfural using MOF and zeolite catalysts[J]. Catalysis Today, 2015, 243: 158-162. |
57 | Kikhtyanin O, Kelbichová V, Vitvarová D, et al. Aldol condensation of furfural and acetone on zeolites[J]. Catalysis Today, 2014, 227: 154-162. |
58 | Balaga R, Yan P F, Ramineni K, et al. The role and performance of isolated zirconia sites on mesoporous silica for aldol condensation of furfural with acetone[J]. Applied Catalysis A: General, 2022, 648: 118901. |
59 | Deng T Y, Yan B H. Enhancing β-hydroxy ketone selectivity in the aldol condensation of furfural and acetone over N—B—O sites in calcined boron nitride[J]. Green Chemistry, 2022, 24(18): 6860-6866. |
60 | Wang W, Ji X H, Ge H G, et al. Synthesis of C15 and C10 fuel precursors with cyclopentanone and furfural derived from hemicellulose[J]. RSC Advances, 2017, 7(27): 16901-16907. |
61 | Zali A, Ghani K, Shokrolahi A, et al. Carbon-based solid acid as an efficient and reusable catalyst for cross-aldol condensation of ketones with aromatic aldehydes under solvent-free conditions[J]. Chinese Journal of Catalysis, 2008, 29(7): 602-606. |
62 | 马峰, 李立强, 郝海娥, 等. 无溶剂条件下活性炭固载硫酸催化酮和芳香醛的Cross-Aldol缩合反应[J]. 有机化学, 2010, 30(3): 419-423. |
Ma F, Li L Q, Hao H E, et al. Activated carbon supported sulfuric acid as an efficient catalyst for Cross-Aldol condensation of ketones with aromatic aldehydes under solvent-free conditions[J]. Chinese Journal of Organic Chemistry, 2010, 30(3): 419-423. | |
63 | Sluban M, Cojocaru B, Parvulescu V I, et al. Protonated titanate nanotubes as solid acid catalyst for aldol condensation[J]. Journal of Catalysis, 2017, 346: 161-169. |
64 | Kikhtyanin O, Bulánek R, Frolich K, et al. Aldol condensation of furfural with acetone over ion-exchanged and impregnated potassium BEA zeolites[J]. Journal of Molecular Catalysis A: Chemical, 2016, 424: 358-368. |
65 | Kikhtyanin O, Ganjkhanlou Y, Kubička D, et al. Characterization of potassium-modified FAU zeolites and their performance in aldol condensation of furfural and acetone[J]. Applied Catalysis A: General, 2018, 549: 8-18. |
66 | Li W Z, Su M X, Zhang T W, et al. Production of liquid fuel intermediates from furfural via aldol condensation over potassium-promoted Sn-MFI catalyst[J]. Fuel, 2019, 237: 1281-1290. |
67 | Arumugam M, Kikhtyanin O, Osatiashtiani A, et al. Potassium-modified bifunctional MgAl-SBA-15 for aldol condensation of furfural and acetone[J]. Sustainable Energy & Fuels, 2023, 7(13): 3047-3059. |
68 | Yuan L Y, Liu M R, Liu S S, et al. Fabrication of Al2O3-ZrO2 composite catalysts with tunable acid-base properties for highly efficient aldol condensation of furfural with acetone[J]. Catalysis Communications, 2022, 166: 106451. |
69 | Nguyen D, Kikhtyanin O, Ramos R, et al. Nanosized TiO2—a promising catalyst for the aldol condensation of furfural with acetone in biomass upgrading[J]. Catalysis Today, 2016, 277: 97-107. |
70 | Fang W T, Liu S H, Schill L, et al. On the role of Zr to facilitate the synthesis of diesel and jet fuel range intermediates from biomass-derived carbonyl compounds over aluminum phosphate[J]. Applied Catalysis B: Environmental, 2023, 320: 121936. |
71 | Kim W, Casalme L O, Umezawa T, et al. A reliable method to create adjacent acid-base pair sites on silica through hydrolysis of pre-anchored amide[J]. Chemistry Letters, 2020, 49(1): 71-74. |
72 | Zeidan R K, Davis M E. The effect of acid-base pairing on catalysis: an efficient acid-base functionalized catalyst for aldol condensation[J]. Journal of Catalysis, 2007, 247(2): 379-382. |
73 | Li G Y, Li N, Wang Z Q, et al. Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose[J]. ChemSusChem, 2012, 5(10): 1958-1966. |
74 | Deng Q, Han P J, Xu J S, et al. Highly controllable and selective hydroxyalkylation/alkylation of 2-methylfuran with cyclohexanone for synthesis of high-density biofuel[J]. Chemical Engineering Science, 2015, 138: 239-243. |
75 | Li S S, Li N, Li G Y, et al. Lignosulfonate-based acidic resin for the synthesis of renewable diesel and jet fuel range alkanes with 2-methylfuran and furfural[J]. Green Chemistry, 2015, 17(6): 3644-3652. |
76 | Konwar L J, Samikannu A, Mäki-Arvela P, et al. Efficient C—C coupling of bio-based furanics and carbonyl compounds to liquid hydrocarbon precursors over lignosulfonate derived acidic carbocatalysts[J]. Catalysis Science & Technology, 2018, 8(9): 2449-2459. |
77 | Zhang X W, Deng Q, Han P J, et al. Hydrophobic mesoporous acidic resin for hydroxyalkylation/alkylation of 2-methylfuran and ketone to high-density biofuel[J]. AIChE Journal, 2017, 63(2): 680-688. |
78 | Gebresillase M N, Shavi R, Seo J G. A comprehensive investigation of the condensation of furanic platform molecules to C14—C15 fuel precursors over sulfonic acid functionalized silica supports[J]. Green Chemistry, 2018, 20(22): 5133-5146. |
79 | Li H, Saravanamurugan S, Yang S, et al. Catalytic alkylation of 2-methylfuran with formalin using supported acidic ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3274-3280. |
80 | Gebresillase M N, Seo J G. Catalytic C—C coupling of furanic platform chemicals to high carbon fuel precursors over supported ionic liquids[J]. Applied Catalysis A: General, 2021, 628: 118421. |
81 | Yan P X, Wang H Y, Liao Y H, et al. Synthesis of renewable diesel and jet fuels from bio-based furanics via hydroxyalkylation/alkylation (HAA) over S O 4 2 - /TiO2 and hydrodeoxygenation (HDO) reactions[J]. Fuel, 2023, 342: 127685. |
82 | Raguindin R Q, Gebresillase M N, Han S J, et al. Hydroxyalkylation/alkylation of 2-methylfuran and furfural over niobic acid catalysts for the synthesis of high carbon transport fuel precursors[J]. Sustainable Energy & Fuels, 2020, 4(6): 3018-3028. |
83 | Damodar D, Kunamalla A, Varkolu M, et al. Near-room-temperature synthesis of sulfonated carbon nanoplates and their catalytic application[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 12707-12717. |
84 | Dutta S, Bohre A, Zheng W Q, et al. Solventless C—C coupling of low carbon furanics to high carbon fuel precursors using an improved graphene oxide carbocatalyst[J]. ACS Catalysis, 2017, 7(6): 3905-3915. |
85 | Chhabra T, Dwivedi P, Krishnan V. Acid functionalized hydrochar as heterogeneous catalysts for solventless synthesis of biofuel precursors[J]. Green Chemistry, 2022, 24(2): 898-910. |
86 | Yang J F, Niu X R, Wu H, et al. Valorization of humin as a glucose derivative to fabricate a porous carbon catalyst for esterification and hydroxyalkylation/alkylation[J]. Waste Management, 2020, 103: 407-415. |
87 | Luo Y J, Zhou Y H, Huang Y B. A new lewis acidic Zr catalyst for the synthesis of furanic diesel precursor from biomass derived furfural and 2-methylfuran[J]. Catalysis Letters, 2019, 149(1): 292-302. |
88 | Chhabra T, Krishnan V. Nanoarchitectonics of niobium (Ⅴ) oxide with grafted sulfonic acid groups for solventless conversion of biomass derivatives to high carbon biofuel precursors[J]. Fuel, 2023, 341: 127713. |
89 | Kunamalla A, Maity S K. Production of green jet fuel from furanics via hydroxyalkylation-alkylation over mesoporous MoO3-ZrO2 and hydrodeoxygenation over Co/γ-Al2O3: role of calcination temperature and MoO3 content in MoO3-ZrO2 [J]. Fuel, 2023, 332: 125977. |
90 | Huang Y B, Yan X Y, Huang Z H, et al. Rapid synthesis of diesel precursors from biomass-derived furanics over aluminum-doped mesoporous silica sphere catalysts[J]. ChemSusChem, 2023, 16(6): e202201677. |
91 | Feng S, Zhang X H, Zhang Q, et al. Synthesis of branched alkane fuel from biomass-derived methyl-ketones via self-aldol condensation and hydrodeoxygenation[J]. Fuel, 2021, 299: 120889. |
92 | Xia Q N, Xia Y J, Xi J X, et al. Selective one-pot production of high-grade diesel-range alkanes from furfural and 2-methylfuran over Pd/NbOPO4 [J]. ChemSusChem, 2017, 10(4): 747-753. |
93 | Ramos R, Tišler Z, Kikhtyanin O, et al. Towards understanding the hydrodeoxygenation pathways of furfural-acetone aldol condensation products over supported Pt catalysts[J]. Catalysis Science & Technology, 2016, 6(6): 1829-1841. |
94 | Jing Y X, Xin Y, Guo Y, et al. Highly efficient Nb2O5 catalyst for aldol condensation of biomass-derived carbonyl molecules to fuel precursors[J]. Chinese Journal of Catalysis, 2019, 40(8): 1168-1177. |
95 | Li K, Zhou F, Liu X H, et al. Hydrodeoxygenation of lignocellulose-derived oxygenates to diesel or jet fuel range alkanes under mild conditions[J]. Catalysis Science & Technology, 2020, 10(4): 1151-1160. |
96 | Li X, Zeng X, Zhang Y. Efficient hydrodeoxygenation of lignocellulose derivative oxygenates to aviation fuel range alkanes using Pd-Ru/hydroxyapatite catalysts[J]. Fuel Processing Technology, 2022, 232: 107263. |
97 | Liu S B, Dutta S, Zheng W Q, et al. Catalytic hydrodeoxygenation of high carbon furylmethanes to renewable jet-fuel ranged alkanes over a rhenium-modified iridium catalyst[J]. ChemSusChem, 2017, 10(16): 3225-3234. |
98 | Xu J L, Li L, Li G Y, et al. Synthesis of renewable C8—C10 alkanes with angelica lactone and furfural from carbohydrates[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6126-6134. |
99 | Zitouni A, Bachir R, Bendedouche W, et al. Production of bio-jet fuel range hydrocarbons from catalytic HDO of biobased difurfurilydene acetone over Ni/SiO2-ZrO2 catalysts[J]. Fuel, 2021, 297: 120783. |
[1] | 李双凤, 王淮, 陈家丽, 姚日生, 朱慧霞, 马晓静. 稻草秸秆综纤维素对阿司匹林片崩解性能的影响[J]. 化工学报, 2019, 70(11): 4420-4427. |
[2] | 刘肖红, 王毅, 安华良, 赵新强, 王延吉. La-Al2O3催化正丁醛自缩合合成辛烯醛反应[J]. 化工学报, 2016, 67(5): 1884-1891. |
[3] | 陈翠娜, 刘肖红, 安华良, 赵新强, 王延吉. H4SiW12O40/SiO2催化正丁醛自缩合反应[J]. 化工学报, 2014, 65(6): 2106-2112. |
[4] | 王结祥,王 强,李云华,陈秉辉. 聚苯乙烯树脂催化羟醛缩合研究进展 [J]. CIESC Journal, 2011, 30(7): 1521-. |
[5] | 晏群山1,彭云云1,2,武书彬1,3. 蔗渣热解中纤维素与半纤维素的相互作用 [J]. CIESC Journal, 2011, 30(2): 442-. |
[6] | 蔡 进,陈峻青,孙 敏,吉 民. 2,2-二羟甲基丙酸的合成工艺 [J]. CIESC Journal, 2006, 25(10): 1198-. |
[7] | 方莉;赵永祥;曲济方;王永钊;刘滇生. 2,2-二羟甲基丁醛的催化合成与表征 [J]. CIESC Journal, 2004, 55(7): 1098-1102. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 531
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 306
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||