化工学报 ›› 2025, Vol. 76 ›› Issue (6): 3029-3040.DOI: 10.11949/0438-1157.20241165
收稿日期:2024-10-21
修回日期:2024-12-04
出版日期:2025-06-25
发布日期:2025-07-09
通讯作者:
于亮
作者简介:杨浩杰(1999—),男,硕士研究生,122020910342@sjtu.edu.cn
基金资助:
Haojie YANG(
), Chunyu LIU, Xuejiao LI, Liang YU(
), Xingcai LYU
Received:2024-10-21
Revised:2024-12-04
Online:2025-06-25
Published:2025-07-09
Contact:
Liang YU
摘要:
通过实验与数值模拟相结合的方法,系统研究了低旋流配置对氨-甲烷-空气预混旋流火焰稳定性极限及污染物排放方面的影响。结果显示,高旋流配置下,各种工况均表现出较高的污染物排放,尤其是未燃氨、一氧化碳和氮氧化物。而低旋流配置显著降低了这些污染物的排放,仅略微缩小了火焰稳定性极限。然而,低旋流配置下的氨-甲烷-空气火焰产生了较高的氧化二氮,这归因于低旋流配置降低了火焰温度,抑制了氧化二氮的热裂解。此外,随着非旋流气流比例的增加,尽管污染物排放量进一步减少,但火焰稳定性极限显著收缩,这与低旋流下火焰结构和流场结构的变化密切相关。综合而言,低旋流配置在污染物排放与火焰稳定性之间可以达到较优的平衡,适用于需要降低污染物排放的燃烧应用场景。
中图分类号:
杨浩杰, 刘春雨, 李雪娇, 于亮, 吕兴才. 低旋流配置下氨-甲烷-空气预混旋流火焰稳定性和排放特性[J]. 化工学报, 2025, 76(6): 3029-3040.
Haojie YANG, Chunyu LIU, Xuejiao LI, Liang YU, Xingcai LYU. Study of stability limits and emission characteristics in premixed ammonia-methane-air swirling flames in low swirl configurations[J]. CIESC Journal, 2025, 76(6): 3029-3040.
| 参数 | LSI1 | LSI2 | HSI |
|---|---|---|---|
| 旋流数SN | 0.6 | 0.6 | 0.6 |
| 叶片角度θ/(°) | 40 | 40 | 40 |
| 叶片数Nb | 8 | 8 | 8 |
| 中心通孔个数Nh | 39 | 55 | — |
| 通孔直径d/mm | 2 | 2 | — |
| 旋流器内径Ri/mm | 10 | 12 | 7 |
| 旋流器外径Ro/mm | 16 | 16 | 16 |
| 非旋流与旋流气体的质量流量之比Rm /% | 25 | 49 | 0 |
表1 旋流器的几何尺寸
Table 1 Geometric dimensions of the swirlers
| 参数 | LSI1 | LSI2 | HSI |
|---|---|---|---|
| 旋流数SN | 0.6 | 0.6 | 0.6 |
| 叶片角度θ/(°) | 40 | 40 | 40 |
| 叶片数Nb | 8 | 8 | 8 |
| 中心通孔个数Nh | 39 | 55 | — |
| 通孔直径d/mm | 2 | 2 | — |
| 旋流器内径Ri/mm | 10 | 12 | 7 |
| 旋流器外径Ro/mm | 16 | 16 | 16 |
| 非旋流与旋流气体的质量流量之比Rm /% | 25 | 49 | 0 |
| 参数 | 数值 |
|---|---|
| 热功率P | 20 kW |
| 甲烷流量Um | 16.1~33.5 SLPM |
| 氨气流量Ua | 0.0~44.8 SLPM |
| 空气流量Uair | 180~600 SLPM |
| 氨气体积分数 | 0~75% |
表2 实验工况
Table 2 Operating conditions
| 参数 | 数值 |
|---|---|
| 热功率P | 20 kW |
| 甲烷流量Um | 16.1~33.5 SLPM |
| 氨气流量Ua | 0.0~44.8 SLPM |
| 空气流量Uair | 180~600 SLPM |
| 氨气体积分数 | 0~75% |
图10 数值模拟三种旋流器配置下NO平均质量分数分布(ηNH3=50%和φ = 0.9)
Fig.10 Numerical simulation of NO mass fraction distribution for three swirler configurations(ηNH3=50% and φ = 0.9)
图13 三种旋流器配置下污染物排放与ηNH3和φ关系函数图(HSI配置被用作参考)
Fig.13 Plots of emissions as a function of φ and ηNH3 for three swirler configurations(HSI is used as the refence for subtraction)
| [1] | Medina A V, Hua X, Owen-Jones M, et al. Ammonia for power[J]. Progress in Energy and Combustion Science, 2018, 69: 63-102. |
| [2] | Hayakawa A, Goto T, Mimoto R, et al. Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures[J]. Fuel, 2015, 159: 98-106. |
| [3] | Lesmana H, Zhu M M, Zhang Z Z, et al. An experimental investigation into the effect of spark gap and duration on minimum ignition energy of partially dissociated NH3 in air[J]. Combustion and Flame, 2022, 241: 112053. |
| [4] | Katoch A, Guiberti T F, de Campos D V, et al. Dual-fuel, dual-swirl burner for the mitigation of thermoacoustic instabilities in turbulent ammonia-hydrogen flames[J]. Combustion and Flame, 2022, 246: 112392. |
| [5] | Goldmann A, Dinkelacker F. Investigation of boundary layer flashback for non-swirling premixed hydrogen/ammonia/nitrogen/oxygen/air flames[J]. Combustion and Flame, 2022, 238: 111927. |
| [6] | De S, Mondal S, Bhattacharya A, et al. Dynamics of premixed flames near lean and rich blowout[J]. Combustion Science and Technology, 2024, 196(11): 1685-1701. |
| [7] | Li S H, Zhang X Y, Zhong D, et al. Effects of inert dilution on the lean blowout characteristics of syngas flames[J]. International Journal of Hydrogen Energy, 2016, 41(21): 9075-9086. |
| [8] | Li Y J, Zheng H T, Cai L. Numerical simulation on H2 rich blowout limit in bluff-body burner[J]. Industrial & Engineering Chemistry Research, 2013, 52(5): 2094-2102. |
| [9] | Valera-Medina A, Marsh R, Runyon J, et al. Ammonia-methane combustion in tangential swirl burners for gas turbine power generation[J]. Applied Energy, 2017, 185: 1362-1371. |
| [10] | Li S, Zhang S S, Zhou H, et al. Analysis of air-staged combustion of NH3/CH4 mixture with low NO x emission at gas turbine conditions in model combustors[J]. Fuel, 2019, 237: 50-59. |
| [11] | Kurata O, Iki N, Matsunuma T, et al. Performances and emission characteristics of NH3-air and NH3-CH4-air combustion gas-turbine power generations[J]. Proceedings of the Combustion Institute, 2017, 36(3): 3351-3359. |
| [12] | Ji L J, Wang J H, Hu G Y, et al. Experimental study on structure and blow-off characteristics of NH3/CH4 co-firing flames in a swirl combustor[J]. Fuel, 2022, 314: 123027. |
| [13] | Kim J H, Song J H, Ku J W, et al. Combustion characteristics of premixed ammonia-hydrogen/air flames in a swirl model combustor[J]. International Journal of Hydrogen Energy, 2024, 49: 1075-1086. |
| [14] | Okafor E C, Somarathne K D K A, Hayakawa A, et al. Towards the development of an efficient low-NO x ammonia combustor for a micro gas turbine[J]. Proceedings of the Combustion Institute, 2019, 37(4): 4597-4606. |
| [15] | Elbaz A M, Albalawi A M, Wang S X, et al. Stability and characteristics of NH3/CH4/air flames in a combustor fired by a double swirl stabilized burner[J]. Proceedings of the Combustion Institute, 2023, 39(4): 4205-4213. |
| [16] | Somarathne K D K A, Hayakawa A, Kobayashi H. Numerical investigation on the combustion characteristics of turbulent premixed ammonia/air flames stabilized by a swirl burner[J]. Journal of Fluid Science and Technology, 2016, 11(4): JFST0026. |
| [17] | Durox D, Moeck J P, Bourgouin J F, et al. Flame dynamics of a variable swirl number system and instability control[J]. Combustion and Flame, 2013, 160(9): 1729-1742. |
| [18] | Jeong H, Han M, Kang K, et al. An experimental study on the effect of a turbulence generating plate in low swirl combustor[J]. Journal of Mechanical Science and Technology, 2017, 31(12): 6077-6084. |
| [19] | Chan C K, Lau K S, Chin W K, et al. Freely propagating open premixed turbulent flames stabilized by swirl[J]. Symposium (International) on Combustion, 1992, 24(1): 511-518. |
| [20] | Littlejohn D, Cheng R K, Noble D R, et al. Laboratory investigations of low-swirl injectors operating with syngases[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(1): 011502. |
| [21] | Verbeek A A, Bouten T W F M, Stoffels G G M, et al. Fractal turbulence enhancing low-swirl combustion[J]. Combustion and Flame, 2015, 162(1): 129-143. |
| [22] | 毛晨林, 王平, Shrotriya Prashant, 等. 含氨燃料预混火焰的层流火焰速度及NO排放特性[J]. 化工学报, 2021, 72(10): 5330-5343. |
| Mao C L, Wang P, Shrotriya P, et al. Laminar flame speed and NO emission characteristics of premixed flames with different ammonia-containing fuels[J]. CIESC Journal, 2021, 72(10): 5330-5343. | |
| [23] | Pashchenko D. Ammonia fired gas turbines: recent advances and future perspectives[J]. Energy, 2024, 290: 130275. |
| [24] | Wu F H, Chen G B. Numerical study of hydrogen peroxide enhancement of ammonia premixed flames[J]. Energy, 2020, 209: 118118. |
| [25] | Xiao Y L, Cao Z B, Wang C W. Flame stability limits of premixed low-swirl combustion[J]. Advances in Mechanical Engineering, 2018, 10(9): 168781401879087. |
| [26] | Clemens N T, Mungal M G. A planar Mie scattering technique for visualizing supersonic mixing flows[J]. Experiments in Fluids, 1991, 11(2): 175-185. |
| [27] | Shih T H, Liou W W, Shabbir A, et al. A new k-ϵ eddy viscosity model for high Reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3): 227-238. |
| [28] | Liu C Y, Gao C H, Huang Y, et al. Experimental and numerical study of combustion characteristics of ammonia-hydrogen-air swirling flame with/without secondary air injection[J]. Chinese Journal of Aeronautics, 2024, 37(4): 243-255. |
| [29] | Sun Y Z, Cai T, Shahsavari M, et al. RANS simulations on combustion and emission characteristics of a premixed NH3/H2 swirling flame with reduced chemical kinetic model[J]. Chinese Journal of Aeronautics, 2021, 34(12): 17-27. |
| [30] | Belal B Y, Li G S, Zhang Z H, et al. The effect of swirl burner design configuration on combustion and emission characteristics of lean pre-vaporized premixed flames[J]. Energy, 2021, 228: 120622. |
| [31] | Singh G, Chander S, Ray A. Heat transfer characteristics of natural gas/air swirling flame impinging on a flat surface[J]. Experimental Thermal and Fluid Science, 2012, 41: 165-176. |
| [32] | Oh J, Noh D, Lee E. The effect of CO addition on the flame behavior of a non-premixed oxy-methane jet in a lab-scale furnace[J]. Applied Energy, 2013, 112: 350-357. |
| [33] | Tao C F, Liu B, Dou Y L, et al. The experimental study of flame height and lift-off height of propane diffusion flames diluted by carbon dioxide[J]. Fuel, 2021, 290: 119958. |
| [34] | Hardalupas Y, Orain M. Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame[J]. Combustion and Flame, 2004, 139(3): 188-207. |
| [35] | Khateeb A A, Guiberti T F, Zhu X R, et al. Stability limits and NO emissions of technically-premixed ammonia-hydrogen-nitrogen-air swirl flames[J]. International Journal of Hydrogen Energy, 2020, 45(41): 22008-22018. |
| [36] | Guiberti T F, Durox D, Zimmer L, et al. Analysis of topology transitions of swirl flames interacting with the combustor side wall[J]. Combustion and Flame, 2015, 162(11): 4342-4357. |
| [37] | Li G, Jiang X, Zhu J Q, et al. Combustion control using a lobed swirl injector and a plasma swirler[J]. Applied Thermal Engineering, 2019, 152: 92-102. |
| [38] | Ariemma G B, Sorrentino G, Ragucci R, et al. Ammonia/methane combustion: stability and NO x emissions[J]. Combustion and Flame, 2022, 241: 112071. |
| [39] | Sayad P, Schönborn A, Klingmann J. Experimental investigation of the stability limits of premixed syngas-air flames at two moderate swirl numbers[J]. Combustion and Flame, 2016, 164: 270-282. |
| [40] | 肖申, 沈来宏, 牛欣, 等. 含氮模型化合物用于化学链燃烧的氮氧化物释放特性[J]. 化工学报, 2015, 66(11): 4588-4596. |
| Xiao S, Shen L H, Niu X, et al. NO x release in chemical looping combustion of N-containing model compounds[J]. CIESC Journal, 2015, 66(11): 4588-4596. | |
| [41] | 程康, 王平, 毛晨林, 等. 氨气-氢气富燃湍流旋转火焰的大涡模拟[J]. 燃烧科学与技术, 2023, 29(5): 561-568. |
| Cheng K, Wang P, Mao C L, et al. Large eddy simulation of rich ammonia-hydrogen turbulent swirling flame[J]. Journal of Combustion Science and Technology, 2023, 29(5): 561-568. | |
| [42] | Mashruk S, Okafor E C, Kovaleva M, et al. Evolution of N2O production at lean combustion condition in NH3/H2/air premixed swirling flames[J]. Combustion and Flame, 2022, 244: 112299. |
| [1] | 訾灿, 黄正梁, 廖祖维, 蒋斌波, 王靖岱, 阳永荣. 循环流化床中颗粒振荡循环现象的实验研究[J]. 化工学报, 2015, 66(8): 2929-2939. |
| [2] | 樊春玲, 金宁德, 陈秀霆, 窦富祥, 高忠科. 两相流流动结构多尺度复杂熵因果关系平面特征[J]. 化工学报, 2015, 66(4): 1301-1309. |
| [3] | 刘戈,解茂昭,贾明. 基于互动小火焰模型的内燃机燃烧过程大涡模拟 [J]. CIESC Journal, 2011, 62(9): 2490-2498. |
| [4] | 邹江, 彭晓峰, 颜维谋. 壁面粗糙度对通道流动特性的影响 [J]. 化工学报, 2008, 59(1): 25-31. |
| [5] | 闻劭意;彭晓峰;吴海玲;王补宣. 粗糙表面不同粗糙元间局部流动与传热特性 [J]. CIESC Journal, 2005, 56(3): 408-411. |
| [6] | 张明辉, 钱震, 余皓, 魏飞, 金涌. 大型循环流化床流动结构分析 [J]. 化工学报, 2003, 54(2): 182-187. |
| [7] | 吴正舜; 张春林; 陈汉平; 刘德昌. 石油焦的燃烧特性 [J]. CIESC Journal, 2001, 52(9): 834-837. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号