化工学报 ›› 2019, Vol. 70 ›› Issue (1): 398-407.DOI: 10.11949/j.issn.0438-1157.20180854
徐建楠1(),蒋新生1(),张昌华2,王易君2,张德翔2,谢威1
收稿日期:
2018-07-25
修回日期:
2018-10-28
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
蒋新生
作者简介:
徐建楠(1990—),男,博士研究生,<email>630517045@qq.com</email>|蒋新生(1972—),男,博士,教授,<email>jxs_dy@163.com</email>
基金资助:
Jiannan XU1(),Xinsheng JIANG1(),Changhua ZHANG2,Yijun WANG2,Dexiang ZHANG2,Wei XIE1
Received:
2018-07-25
Revised:
2018-10-28
Online:
2019-01-05
Published:
2019-01-05
Contact:
Xinsheng JIANG
摘要:
利用激波管,对常压下温度1200~1600 K、体积分数1.0%~2.4%范围内的92号汽油-空气混合气的着火延迟特性进行了实验研究,以探索低压初始环境中油气爆炸的着火延迟规律。分析了着火延迟时间随点火温度和油气浓度的变化规律;得到了不同浓度下汽油着火延迟时间的计算公式;根据实验结果对比分析了七种机理模型的优劣;结合机理中主要组分的产生、消耗速率变化,剖析了浓度影响着火延迟的原因。结果表明,汽油着火延迟时间与点火温度的倒数呈良好的指数关系;同一高温下,浓度越大,油气着火延迟时间越长,原因是高油气浓度下烃分子与H的反应更强,从而抑制H与O2的反应;在验证的七种机理中,Abhijeet Raj机理在低压下对各油气浓度的着火延迟时间计算精度较高,适宜应用到油气爆炸模拟中。研究为汽油燃烧动力学机理的验证、优化与应用提供了较为准确的数据基础。
中图分类号:
徐建楠, 蒋新生, 张昌华, 王易君, 张德翔, 谢威. 不同工况下汽油蒸气爆炸着火延迟与机理分析[J]. 化工学报, 2019, 70(1): 398-407.
Jiannan XU, Xinsheng JIANG, Changhua ZHANG, Yijun WANG, Dexiang ZHANG, Wei XIE. Ignition delay measurements and analysis of kinetic mechanisms for gasoline-air explosion under different conditions[J]. CIESC Journal, 2019, 70(1): 398-407.
CH% | T/K | τ/μs | CH% | T/K | τ/μs | CH% | T/K | τ/μs | CH% | T/K | τ/μs | CH% | T/K | τ/μs |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.0% | 1241 | 1054 | 1.4% | 1262 | 1001 | 1.65% | 1218 | 1553 | 2.0% | 1252 | 1141 | 2.4% | 1234 | 1451 |
1274 | 683 | 1303 | 457 | 1283 | 734 | 1283 | 726 | 1271 | 956 | |||||
1348 | 219 | 1319 | 440 | 1284 | 649 | 1304 | 573 | 1301 | 655 | |||||
1323 | 325 | 1332 | 313 | 1296 | 608 | 1320 | 374 | 1339 | 404 | |||||
1375 | 163 | 1372 | 195 | 1318 | 430 | 1356 | 243 | 1365 | 282 | |||||
1417 | 82 | 1445 | 83 | 1371 | 185 | 1422 | 138 | 1377 | 215 | |||||
1444 | 67 | 1445 | 104 | 1439 | 96 | 1459 | 103 |
表1 着火延迟时间实验数据
Table 1 Experiment data of ignition delay time
CH% | T/K | τ/μs | CH% | T/K | τ/μs | CH% | T/K | τ/μs | CH% | T/K | τ/μs | CH% | T/K | τ/μs |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.0% | 1241 | 1054 | 1.4% | 1262 | 1001 | 1.65% | 1218 | 1553 | 2.0% | 1252 | 1141 | 2.4% | 1234 | 1451 |
1274 | 683 | 1303 | 457 | 1283 | 734 | 1283 | 726 | 1271 | 956 | |||||
1348 | 219 | 1319 | 440 | 1284 | 649 | 1304 | 573 | 1301 | 655 | |||||
1323 | 325 | 1332 | 313 | 1296 | 608 | 1320 | 374 | 1339 | 404 | |||||
1375 | 163 | 1372 | 195 | 1318 | 430 | 1356 | 243 | 1365 | 282 | |||||
1417 | 82 | 1445 | 83 | 1371 | 185 | 1422 | 138 | 1377 | 215 | |||||
1444 | 67 | 1445 | 104 | 1439 | 96 | 1459 | 103 |
Temperature/K | Concentration/%(vol) | ||||
---|---|---|---|---|---|
2.4 | 2.0 | 1.65 | 1.4 | 1.0 | |
1250 | 1227 | 1139 | 1043 | 1126 | 611 |
1330 | 428 | 373 | 362 | 346 | 188 |
1450 | 110 | 88 | 92 | 75 | 41 |
表2 不同工况下汽油蒸气着火延迟时间的比较
Table 2 Comparison of ignition delay time of gasoline vapor under different conditions/μs
Temperature/K | Concentration/%(vol) | ||||
---|---|---|---|---|---|
2.4 | 2.0 | 1.65 | 1.4 | 1.0 | |
1250 | 1227 | 1139 | 1043 | 1126 | 611 |
1330 | 428 | 373 | 362 | 346 | 188 |
1450 | 110 | 88 | 92 | 75 | 41 |
Reaction mechanism | Number of species | Number of reactants | Ref. | Surrogate fuel |
---|---|---|---|---|
mech 1 | 339 | 2791 | [35] | surrogate B |
mech 2 | 226 | 2121 | [36] | surrogate A |
mech 3 | 109 | 543 | [37] | surrogate A |
mech 4 | 323 | 1489 | [38] | surrogate A |
mech 5 | 199 | 1011 | [39] | surrogate A |
mech 6 | 56 | 168 | [40] | surrogate A |
mech 7 | 1121 | 4961 | [18] | surrogate A |
表3 采用的反应机理与替代燃料
Reaction mechanism | Number of species | Number of reactants | Ref. | Surrogate fuel |
---|---|---|---|---|
mech 1 | 339 | 2791 | [35] | surrogate B |
mech 2 | 226 | 2121 | [36] | surrogate A |
mech 3 | 109 | 543 | [37] | surrogate A |
mech 4 | 323 | 1489 | [38] | surrogate A |
mech 5 | 199 | 1011 | [39] | surrogate A |
mech 6 | 56 | 168 | [40] | surrogate A |
mech 7 | 1121 | 4961 | [18] | surrogate A |
Item | RON92 gasoline | surrogate A(TRF) | surrogate B(PRF) |
---|---|---|---|
RON | 92 | 92 | 92 |
MON | 86 | 87 | 92 |
H/C | 1.87 | 1.97 | 2.25 |
density/(g/ml) | 0.746 | 0.731 | 0.689 |
low heat value/(MJ/kg) | 43.61 | 43.66 | 44.67 |
表4 92号汽油及其替代燃料的物化性质
Table 4 Physical and chemical properties of 92# gasoline and its surrogate fuels
Item | RON92 gasoline | surrogate A(TRF) | surrogate B(PRF) |
---|---|---|---|
RON | 92 | 92 | 92 |
MON | 86 | 87 | 92 |
H/C | 1.87 | 1.97 | 2.25 |
density/(g/ml) | 0.746 | 0.731 | 0.689 |
low heat value/(MJ/kg) | 43.61 | 43.66 | 44.67 |
1200 K | 1400 K | 1600 K | ||||
---|---|---|---|---|---|---|
Simulation/μs | Error/% | Simulation/μs | Error/% | Simulation/μs | Error/% | |
mech 1 | 3896 | 53 | 465 | 237 | 63 | 305 |
mech 2 | 2490 | 2 | 161 | 17 | 21 | 36 |
mech 3 | 3489 | 37 | 469 | 241 | 73 | 371 |
mech 4 | 5646 | 121 | 623 | 352 | 76 | 394 |
mech 5 | 4885 | 92 | 653 | 374 | 82 | 430 |
mech 6 | 2078 | 18 | 289 | 110 | 59 | 280 |
mech 7 | 3016 | 18 | 321 | 133 | 43 | 180 |
experiment /μs | 2549 | 138 | 15 |
表5 实验与机理计算结果的偏差对比
Table 5 Comparison of error between experimental and simulated results
1200 K | 1400 K | 1600 K | ||||
---|---|---|---|---|---|---|
Simulation/μs | Error/% | Simulation/μs | Error/% | Simulation/μs | Error/% | |
mech 1 | 3896 | 53 | 465 | 237 | 63 | 305 |
mech 2 | 2490 | 2 | 161 | 17 | 21 | 36 |
mech 3 | 3489 | 37 | 469 | 241 | 73 | 371 |
mech 4 | 5646 | 121 | 623 | 352 | 76 | 394 |
mech 5 | 4885 | 92 | 653 | 374 | 82 | 430 |
mech 6 | 2078 | 18 | 289 | 110 | 59 | 280 |
mech 7 | 3016 | 18 | 321 | 133 | 43 | 180 |
experiment /μs | 2549 | 138 | 15 |
1 | SlavinskayaN A, HaidnO J. Modeling of n-heptane and iso-octane oxidation in air[J]. Journal of Propulsion & Power, 2003, 19(6): 1200-1216. |
2 | LiS J, CamposA, DavidsonD F, et al. Shock tube measurements of branched alkane ignition delay times[J]. Fuel, 2014, 118(1): 398-405. |
3 | DavidsonD F, OehlschlaegerM A, HerbonJ T, et al. Shock tube measurements of iso-octane ignition times and OH concentration time histories[J]. Proceedings of the Combustion Institute, 2002, 29(1): 1295-1301. |
4 | BounaceurR, CostaI D, FoumetR, et al. Experimental and modeling study of the oxidation of toluene[J]. International Journal of Chemical Kinetics, 2005, 37(1): 25-49. |
5 | SivaramakrishnanR, TranterR S, BrezinskyK. High pressure pyrolysis of toluene(1): experiments and modeling of toluene decomposition[J]. Journal of Physical Chemistry A, 2006, 110(30): 9388-9399. |
6 | 谢伟, 李萍, 张昌华, 等. 利用OH自由基特征发射谱测量正庚烷的点火延迟时间[J]. 光谱学与光谱分析, 2011, 31(2): 488-491. |
XieW, LiP, ZhangC H, et al. Measurements of the ignition delay times of n-heptane by using characteristic emission from OH radical[J]. Spectroscopy and Spectral Analysis. 2011, 31(2): 488-491. | |
7 | PitzW J, NaikC V, MhaoldúinT N, et al. Modeling and experimental investigation of methylcyclohexane ignition in a rapid compression machine [J]. Proceedings of the Combustion Institute, 2007, 31(1): 267-275 |
8 | BuglerJ, MarksB, MathieuO, et al. An ignition delay time and chemical kinetic modeling study of the pentane isomers[J]. Combustion & Flame, 2016, 163(1): 138-156. |
9 | GaoC W, VandeputteA R G, YeeN W, et al. JP-10 combustion studied with shock tube experiments and modeled with automatic reaction mechanism generation[J]. Combustion and Flame, 2015, 162(8): 3115-3129. |
10 | 王苏, 范秉诚, 何宇中, 等. 硅烷对JP10和煤油点火特性影响的激波管研究[J]. 力学学报, 2007, 39(4): 460-465. |
WangS, FanB C, HeY Z, et al. Effect of silane on ignition characteristics of JP10 and kerosene as shown in shock tube study[J]. Journal of mechanics, 2007, 39(4): 460-465. | |
11 | NarayanaswamyK, PitschH, PepiotP. A chemical mechanism for low to high temperature oxidation of methylcyclohexane as a component of transportation fuel surrogates [J]. Combustion and Flame, 2015, 162(4): 1193-1213. |
12 | SeidelL, KaiM, WangX, et al. Comprehensive kinetic modeling and experimental study of a fuel-rich, premixed n-heptane flame[J]. Combustion & Flame, 2015, 162(5): 2045-2058. |
13 | JiaM, XieM. A chemical kinetics model of iso-octane oxidation for HCCI engines[J]. Transactions of CSICE, 2006, 85(17): 2593-2604. |
14 | ZhongB J, ZhengD. A chemical mechanism for ignition and oxidation of multi-component gasoline surrogate fuels[J]. Fuel, 2014, 128 (14): 458-466. |
15 | AndraeJ C G, KovácsT. Evaluation of adding an olefin to mixtures of primary reference fuels and toluene to model the oxidation of a fully blended gasoline[J]. Energy & Fuels, 2016, 30(9): 7721-7730. |
16 | ZhenX, YangW, LiuD. A new improvement on a chemical kinetic model of primary reference fuel for multi-dimensional CFD simulation[J]. Energy Conversion & Management, 2016, 109(2): 113-121. |
17 | AndraeJ C G. Comprehensive chemical kinetic modeling of toluene reference fuels oxidation[J]. Fuel, 2013, 107(9): 740-748. |
18 | AndraeJ C G. Development of a detailed kinetic model for gasoline surrogate fuels[J]. Fuel, 2008, 87(10/11): 2013-2022. |
19 | HeghesC, MorganN, RiedelU, et al. Development and validation of a gasoline surrogate fuel kinetic mechanism[C]//SAE World Congress, SAE Technical Papers, 2009. |
20 | TanakaS, AyalaF, KeckJ C, et al. Two-stage ignition in HCCI combustion and HCCI control by fuels and additives[J]. Combustion & Flame, 2003, 132(1/2): 219-239. |
21 | AndraeJ, JohanssonD, BjörnbomP, et al. Co-oxidation in the auto-ignition of primary reference fuels and n-heptane/toluene blends[J]. Combustion & Flame, 2007, 140(4): 267-286. |
22 | PitzW J, CeraanaskyN P, DryerF L, et al. Development of an experimental database and kinetic models for surrogate jet fuels[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. SAE Technical Papers, 2007. |
23 | GauthierB M, DavidsonD F, HansonR K. Shock tube determination of ignition delay times in full-blend and surrogate fuel mixtures[J]. Combustion & Flame, 2004, 139(4): 300-311. |
24 | LiH, YuL, LuX C, et al. Autoignition of ternary blends for gasoline surrogate at wide temperature ranges and at elevated pressure: shock tube measurements and detailed kinetic modeling[J]. Fuel, 2016, 181 (10): 916-925. |
25 | FikriM, HerzlerJ, StarkeR, et al. Autoignition of gasoline surrogates mixtures at intermediate temperatures and high pressures[J]. Combustion & Flame, 2008, 152(1/2): 276-281. |
26 | KukkadapuG, KumarK, SungC J, et al. Experimental and surrogate modeling study of gasoline ignition in a rapid compression machine[J]. Combustion & Flame, 2012, 159(10): 3066-3078. |
27 | KimY, MinK, KimM S, et al. Development of a reduced chemical kinetic mechanism and ignition delay measurement in a rapid compression machine for CAI combustion[C]// SAE World Congress & Exhibition. SAE Technical Paper, 2007. |
28 | ZhangP L, DuY, WuS L, et al. Flame regime estimations of gasoline explosion in a tube[J]. Journal of Loss Prevention in the Process Industries, 2015, 33(1): 304-310. |
29 | QiS, DuY, ZhangP L, et al. Effects of concentration, temperature, humidity, and nitrogen inert dilution on the gasoline vapor explosion[J]. Journal of Hazardous Materials, 2016, 323(2): 593-601. |
30 | LiG Q, DuY, QiS, et al. Explosions of gasoline-air mixtures in a closed pipe containing a T-shaped branch structure[J]. Journal of Loss Prevention in the Process Industries, 2016, 43(9): 529-536. |
31 | 李国庆, 杜扬, 齐圣, 等. 障碍物位置和油气浓度对油气泄压爆炸特性影响[J].化工学报, 2018, 69(5): 2327-2336. |
LiG Q, DuY, QiS, et al. Effects of obstacle position and gas concentration on gasoline venting explosion[J]. CIESC Journal, 2018, 69(5): 2327-2336. | |
32 | 崔建方, 李建华, 郭超, 等. 93号汽油组分的GC/MS研究[J]. 广州化工, 2013, 41(1): 97-102. |
CuiJ F, LiJ H, GuoC, et al. GC/MS study on chemical components of gasoline 93# [J]. Guangzhou Chemical Industry, 2013, 41(1): 97-102. | |
33 | 李从善, 李萍, 张昌华, 等. 甲基环己烷燃烧反应特性的光谱研究[J]. 光谱学与光谱分析, 2011, 31(9): 2521-2524. |
LiC S, LiP, ZhangC H, et al. Spectroscopic study on the combustion reaction characteristics of methylcyclohexane[J]. Spectroscopy and Spectral Analysis, 2011, 31(9): 2521-2524. | |
34 | 曾文, 李海霞, 马洪安, 等. RP-3航空煤油模拟替代燃料的化学反应简化机理[J].推进技术, 2014, 35(8): 1139-1145. |
ZengW, LiH X, MaH A, et al. Reduced chemical reaction mechanism of surrogate fuel for RP-3 kerosene[J]. Journal of Propulsion Technology, 2014, 35(8): 1139-1145. | |
35 | CaiL M, PitschH. Optimized chemical mechanism for combustion of gasoline surrogate fuels[J]. Combustion & Flame, 2015, 162(5): 1623-1637. |
36 | RajA, PradaI D C, AmerA A, et al. A reaction mechanism for gasoline surrogate fuels for large polycyclic aromatic hydrocarbons[J]. Combustion & Flame, 2012, 159(2): 500-515. |
37 | WangH, YaoM F, YueZ Y, et al. A reduced toluene reference fuel chemical kinetic mechanism for combustion and polycyclic- aromatic hydrocarbon predictions[J]. Combustion & Flame, 2015, 162(6): 2390-2404. |
38 | MehlM, ChenJ Y, PitzW J, et al. An approach for formulating surrogates for gasoline with application toward a reduced surrogate mechanism for CFD engine modeling[J]. Energy & Fuels, 2011, 25(11): 5215-5223. |
39 | NiemeyerK E, SungC J. Mechanism reduction for multicomponent surrogates: a case study using toluene reference fuels[J]. Combustion & Flame, 2014, 161(11): 2752-2764. |
40 | LiuY D, JiaM, XieM Z, et al. Development of a new skeletal chemical kinetic model of toluene reference fuel with application to gasoline surrogate fuels for computational fluid dynamics engine simulation[J]. Energy & Fuels, 2013, 27(8): 4899-4909. |
41 | 王怡峰. 汽油燃料替代混合物低温燃烧机理数值模拟与试验研究[D]. 天津: 天津大学, 2014. |
WangY F. Numerical and experimental investigation on gasoline surrogate low temperature combustion mechanism[D].Tianjin: Tianjin Univeristy, 2014. | |
42 | JiaG R, WangH, TongL H, et al. Experimental and numerical studies on three gasoline surrogates applied in gasoline compression ignition (GCI) mode[J]. Applied Energy, 2017, 192(4): 59-70. |
[1] | 何仁初, 张朝晖, 杨明磊, 王聪, 奚桢浩. 考虑碳排放因素的汽油调合在线优化[J]. 化工学报, 2023, 74(2): 818-829. |
[2] | 汪恺, 杜文莉, 隆建. 在线自适应波长选择方法及其在汽油调和过程中的应用[J]. 化工学报, 2021, 72(2): 1059-1066. |
[3] | 张尊华, 徐力, 梁俊杰, 李敬瑞, 李格升. 甲烷/乙烷与甲烷/丙烷混合燃料着火特性[J]. 化工学报, 2018, 69(5): 2199-2207. |
[4] | 胡玲玉, 闫兆晴, 李明富, 金叶, 崔富林, 覃睿, 骆莲新. 桑枝SCMP浆阴离子基团的吸附过程及吸附机理[J]. 化工学报, 2017, 68(1): 320-328. |
[5] | 王玉梅, 程辉, 钱锋. 改进生物地理学优化算法及其在汽油调合调度中的应用[J]. 化工学报, 2016, 67(3): 773-778. |
[6] | 黄维秋, 王兆利, 纪虹, 赵晨露, 吕爱华, 徐先阳, 王翊红. 汽油装罐油气扩散排放的实验测定及数值模拟[J]. 化工学报, 2016, 67(12): 4994-5005. |
[7] | 叶飞燕, 梅亮, 肖静, 夏启斌, 李忠. Ti-Si-O双功能催化吸附材料的汽油光催化-吸附耦合脱硫性能[J]. 化工学报, 2015, 66(12): 4858-4864. |
[8] | 于亚薇, 钟北京. 正丁烷气相着火的骨架反应机理模型[J]. 化工学报, 2014, 65(10): 3899-3905. |
[9] | 吴杰1,张忠东 1,2,李艳晗3,徐仁飞3,王书峰1,许长辉3,何崇慧1. GARDES技术在大庆石化130万吨/年汽油加氢改质装置的工业应用[J]. 化工进展, 2014, 33(09): 2506-2509. |
[10] | 申曙光,任云朋,张东峰,范济民,赵志军. 焦化轻油制备高辛烷值汽油调和组分[J]. 化工进展, 2014, 33(03): 623-628. |
[11] | 龚朝兵,赵晨曦,谢海峰. 全馏分催化汽油加氢脱硫工艺的标定与运行分析[J]. 化工进展, 2014, 33(01): 253-256. |
[12] | 彭强 杨晓西 丁静 魏小兰 杨建平. 三元硝酸熔盐高温热稳定性实验研究与机理分析[J]. 化工学报, 2013, 64(5): 0-0. |
[13] | 彭强 杨晓西 丁静 魏小兰 杨建平. 三元硝酸熔盐高温热稳定性实验研究与机理分析[J]. 化工学报, 2013, 64(5): 0-0. |
[14] | 袁奇, 程辉, 钟伟民, 钱锋. 全局群搜索优化算法及其在汽油调合中的应用[J]. 化工学报, 2013, 64(12): 4427-4433. |
[15] | 庞小文,孟凡会,卢建军,邹佩良,李 忠. 甲醇制汽油工艺及催化剂制备的研究进展[J]. 化工进展, 2013, 32(05): 1014-1019. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||