化工学报 ›› 2012, Vol. 63 ›› Issue (3): 796-799.DOI: 10.3969/j.issn.0438-1157.2012.03.017
• 流体力学与传递现象 • 上一篇 下一篇
周云龙,顾杨杨
收稿日期:
出版日期:
发布日期:
通讯作者:
ZHOU Yunlong,GU Yangyang
Received:
Online:
Published:
关键词: 流型识别, 固定点算法, RBF神经网络
Abstract: It is the key issue of two-phase flow research to identify the flow type. The variability of two-phase flow medium leads to diversity and randomness of two-phase patterns, so it is difficult to identify the flow pattern effectively. Thinks to independent component analysis (ICA) fixed point algorithm,featuring fast convergence speed and no need of the introduction of some iterative process parameters,such as regulated step,in this paper the method named ICA-RBF was developed,which included two steps:first,applying the fixed point algorithm of negative entropy to extract convection-type characteristic parameters; second,identifying the parameters by radial basis function(RBF) neural network. Moreover, other two means, i.e. wavelet packet decomposition and singular value decomposition were introduced to extract feature from the same set of data. Through experimental comparison, it was concluded that ICA-RBF had better recognition results as well as simpler inspection process steps, which could reduce a lot of man-made errors and obtain more accurate and convincing result.It is the key issue of two-phase flow research to identify the flow type. The variability of two-phase flow medium leads to diversity and randomness of two-phase patterns, so it is difficult to identify the flow pattern effectively. Thinks to independent component analysis (ICA) fixed point algorithm,featuring fast convergence speed and no need of the introduction of some iterative process parameters,such as regulated step,in this paper the method named ICA-RBF was developed,which included two steps:first,applying the fixed point algorithm of negative entropy to extract convection-type characteristic parameters; second,identifying the parameters by radial basis function(RBF) neural network. Moreover, other two means, i.e. wavelet packet decomposition and singular value decomposition were introduced to extract feature from the same set of data. Through experimental comparison, it was concluded that ICA-RBF had better recognition results as well as simpler inspection process steps, which could reduce a lot of man-made errors and obtain more accurate and convincing result.
Key words: flow pattern identification, fixed point algorithm, RBF neural network
周云龙,顾杨杨. 基于独立分量分析和RBF神经网络的气液两相流流型识别[J]. 化工学报, 2012, 63(3): 796-799.
ZHOU Yunlong,GU Yangyang. Flow regime identification of gas/liquid two-phase flow based ICA and RBF neural networks[J]. CIESC Journal, 2012, 63(3): 796-799.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: https://hgxb.cip.com.cn/CN/10.3969/j.issn.0438-1157.2012.03.017
https://hgxb.cip.com.cn/CN/Y2012/V63/I3/796
基于多群竞争PSO-RBFNN的乙烯裂解深度智能优化控制
基于PSO_SA算法的聚丙烯熔融指数预报
基于神经网络和D-S证据理论的气液两相流流型识别方法
基于RBF神经网络的流向变换催化燃烧反应器的温度预测