[1] Bakshi, B.R., Nounou, M.N., Goel, P.K., Shen, X., "Multiscale Bayesian rectification of data from linear steady-state and dynamic systems without accurate models", Ind. Eng. Chem. Res., 40(1), 261-274(2001). [2] Bakshi, B.R., Bansal, P., Nounou, M.N., "Multi-scale rectification of random errors without fundamental process models", Comp. Chem. Engng.,21(1), 1167-1172(1997). [3] Carrier, J.F., Stephanopoulos, G., "Wavelet-based modularion in control-relevant process identification", AIChE J., 44(2), 341-360 (1998). [4] Feng,W., "The application of time-frequency techniques to process control and identification", Ph. D. Thesis, Texas A&M Univ.(1996). [5] Lee, J.H., Chikkula, Y., Yu, Z., Kantor, J.C., "Improving computational efficiency of a model predictive control algorithm using wavelet transformation", Int. J. Control., 61(4), 859-883(1995). [6] Palavajjhala, S., Motard, R.L., Joseph, B., "Blocking and condensing design for quadratic dynamic matrix control using wavelets", Ind. Eng.Chem. Res., 33(5), 1159-1173 (1994). [7] Mallat, S.G., "A theory for multiresolution signal decomposition: The wavelet represention", IEEE Trans. on PAMI.,11(7), 647-695(1989). [8] Daubechies. I., "Orthonormal bases of compactly supportedly wavelets", Comm. Pure. and Appl. Math.,41(7), 909-996(1988). [9] Peng, Y., Wavelet Transform and Its Application in Engineering,Science Press, Beijing (1999). (in Chinese) [10] Cohen,A., Daubechies, I., Pierre,V., "Wavelets on the interval and fast wavelet transforms", Appl. Comput. Harmonic Anal., 1(1), 54-81 (1993). [11] Coifman, R.R., Wickerhauser., M.V., "Entropy-based algorithms for best basis selection.", IEEE. Trans. on IT.,38(3),713-718(1992). [12] Strang, G., "Wavelets and dilation equations: A brief introduction",SIAM Review., 31 (4), 614-627(1989). |