CIESC Journal
• 过程系统工程 • 上一篇 下一篇
基于神经网络的振荡热管传热性能建模
崔晓钰;翁建华;M.GROLL
无锡快捷半导体有限公司,江苏无锡214028;斯图加特大学核能与能源系研究所,德国斯图加特70569
出版日期:
发布日期:
CUI Xiaoyu;WENG Jianhua;M.GROLL
Online:
Published:
Abstract: This paper presents artificial neural network (ANN) modeling of heat transfer performance for a pulsating heat pipe (PHP). The investigated PHP is a vertical closed loop copper/ethanol PHP. Fully connected multi-layer feed forward network is adopted and back propagation momentum algorithm, sigmoid node function are used. In the network, two input nodes correspond to heat load and fill rate and the output is a single node for thermal resistance. The matching of the ANN test output data and the experimental data is satisfying. It can be inferred that the ANN model can be applied to accurately model PHP performance.
崔晓钰;翁建华;M.GROLL.
导出引用管理器 EndNote|Ris|BibTeX
链接本文: https://hgxb.cip.com.cn/CN/
https://hgxb.cip.com.cn/CN/Y2003/V54/I9/1319