基于人工神经网络的大型浇注型聚氨酯弹性体收缩规律的模拟
姜开宇;苏同义;王敏杰;徐文波
大连理工大学精密与特种加工教育部重点实验室,辽宁 大连 116023
Simulation on rule of shrinkage of large CPUE based on neural network
JIANG Kaiyu;SU Tongyi;WANG Minjie;YU Tongmin
摘要: 收缩率的选取是决定大型浇注型聚氨酯弹性体(CPUE)模具设计是否成功的关键因素之一.以大量的实验为基础,系统地研究了各种工艺参数对大型聚氨酯弹性体制品收缩率的影响,并建立了制品的结构模型以及基于BP网的神经网络模型.通过对实验数据的学习,利用该神经网络模型可以实现以工艺参数为输入,制品收缩率为输出的大型聚氨酯弹性体收缩率的预测.预测结果和实验数据的对比表明此方法可以较为准确地对不同工艺条件下的弹性体收缩率进行预测,从而减少修模次数,降低生产成本.