化工学报 ›› 2019, Vol. 70 ›› Issue (9): 3228-3237.DOI: 10.11949/0438-1157.20181314
收稿日期:
2018-11-12
修回日期:
2019-05-17
出版日期:
2019-09-05
发布日期:
2019-09-05
通讯作者:
张足斌
作者简介:
王海琴(1969—),女,博士,副教授,基金资助:
Haiqin WANG1,2(),Minglong FAN2,Zubin ZHANG1,2()
Received:
2018-11-12
Revised:
2019-05-17
Online:
2019-09-05
Published:
2019-09-05
Contact:
Zubin ZHANG
摘要:
汽液平衡热力学模型的准确选取对CO2-C2H6共沸物分离流程的设计和操作分析至关重要。在汽液平衡实验数据的基础上,依据逸度平衡原则,评估vdW、RK、SRK和PR立方型状态方程结合vdW、Margles和CVD混合规则预测CO2纯物质、CO2-C2H6共沸物和n-C5H12-CO2-C2H6三元体系汽液平衡的可靠性,采用平均绝对误差的方法进行状态方程的选取。结果表明:SRK状态方程计算CO2纯物质汽液平衡性质的精度最高;PR状态方程结合Margles混合规则可以准确计算CO2-C2H6共沸体系汽液平衡特性;对于n-C5H12-CO2-C2H6三元体系,SRK状态方程结合Margles混合规则计算精度明显优于vdW、RK和PR状态方程。通过试差迭代法优化CO2-C2H6共沸体系和n-C5H12-CO2-C2H6三元体系的二元交互作用参数,状态方程的计算精度得到明显提高。
中图分类号:
王海琴, 范明龙, 张足斌. CO2-C2H6共沸物分离的立方型状态方程选取[J]. 化工学报, 2019, 70(9): 3228-3237.
Haiqin WANG, Minglong FAN, Zubin ZHANG. Selection of cubic equations of state for separation of CO2-C2H6 azeotrope[J]. CIESC Journal, 2019, 70(9): 3228-3237.
状态方程 | 公式形式 | 特征常数 | 纯物质逸度系数 | 混合物逸度系数 |
---|---|---|---|---|
vdW | | | | |
RK | | | | |
SRK | | | | |
PR | | | | |
表1 立方型状态方程以及纯物质、混合物质的逸度系数计算
Table 1 Formula for cubic equations of state and fugacity coefficient
状态方程 | 公式形式 | 特征常数 | 纯物质逸度系数 | 混合物逸度系数 |
---|---|---|---|---|
vdW | | | | |
RK | | | | |
SRK | | | | |
PR | | | | |
混合规则 | 混合物特征常数 | |
---|---|---|
a m | b m | |
vdW | | |
Margles | | |
CVD | |
表2 立方型状态方程的不同混合规则
Table 2 Different mixed rules for cubic equations of state
混合规则 | 混合物特征常数 | |
---|---|---|
a m | b m | |
vdW | | |
Margles | | |
CVD | |
温度、压力 范围 | 混合 规则 | 状态方程 | | | | |
---|---|---|---|---|---|---|
优化后 | 优化前 | |||||
244.6~288 K, 1.43~5.63 MPa | vdW | vdW | 0.1589 | 0.1424 | 0.2243 | 0.4435 |
RK | 0.2137 | 0.2937 | 0.2889 | 0.3212 | ||
SRK | 0.3257 | 0.2077 | 0.2406 | 0.2691 | ||
PR | 0.2850 | 0.1901 | 0.2160 | 0.2541 | ||
Margles | vdW | 0.1981 | 0.0948 | 0.2212 | 0.4460 | |
RK | 0.2384 | 0.1600 | 0.2224 | 0.3122 | ||
SRK | 0.2754 | 0.1618 | 0.1889 | 0.2500 | ||
PR | 0.2668 | 0.1445 | 0.1841 | 0.2765 | ||
CVD | vdW | 0.1707 | 0.1994 | 0.3943 | 0.3952 | |
RK | 0.1002 | 0.1661 | 0.3872 | 0.3894 | ||
SRK | 0.0099 | 0.2212 | 0.3854 | 0.3914 | ||
PR | 0.1779 | 0.1485 | 0.3859 | 0.3876 |
表3 CO2-C2H6共沸体系优化后的二元交互作用参数kij
Table 3 AAD of EOSs with new binary interaction parameters kij of CO2-C2H6 azeotropic system
温度、压力 范围 | 混合 规则 | 状态方程 | | | | |
---|---|---|---|---|---|---|
优化后 | 优化前 | |||||
244.6~288 K, 1.43~5.63 MPa | vdW | vdW | 0.1589 | 0.1424 | 0.2243 | 0.4435 |
RK | 0.2137 | 0.2937 | 0.2889 | 0.3212 | ||
SRK | 0.3257 | 0.2077 | 0.2406 | 0.2691 | ||
PR | 0.2850 | 0.1901 | 0.2160 | 0.2541 | ||
Margles | vdW | 0.1981 | 0.0948 | 0.2212 | 0.4460 | |
RK | 0.2384 | 0.1600 | 0.2224 | 0.3122 | ||
SRK | 0.2754 | 0.1618 | 0.1889 | 0.2500 | ||
PR | 0.2668 | 0.1445 | 0.1841 | 0.2765 | ||
CVD | vdW | 0.1707 | 0.1994 | 0.3943 | 0.3952 | |
RK | 0.1002 | 0.1661 | 0.3872 | 0.3894 | ||
SRK | 0.0099 | 0.2212 | 0.3854 | 0.3914 | ||
PR | 0.1779 | 0.1485 | 0.3859 | 0.3876 |
温度、压力范围 | 混合规则 | EOS | | | | | | | | |
---|---|---|---|---|---|---|---|---|---|---|
优化后 | 优化前 | |||||||||
253~283 K, 0.6896~5.46 MPa | vdW | vdW | -0.6837 | 0.0875 | 0.9587 | -0.3942 | 0.3495 | 0.3443 | 1.8261 | 2.9008 |
RK | -0.6438 | 0.0921 | 0.9977 | 0.8328 | 0.2997 | 0.6939 | 1.8108 | 2.4772 | ||
SRK | -0.4869 | 0.2656 | 1.0962 | -0.4959 | 0.3834 | 3.4815 | 2.3790 | 2.5333 | ||
PR | -0.3722 | 0.1694 | 1.0288 | -0.4821 | 0.3716 | 3.3173 | 2.1855 | 2.5360 | ||
Margles | vdW | 1.7717 | -0.4295 | 1.0937 | 0.0148 | 0.4679 | -0.0955 | 1.6319 | 2.2090 | |
RK | 1.9416 | -0.5333 | 1.2083 | 0.3128 | 0.3289 | -0.0739 | 1.0382 | 2.2478 | ||
SRK | 0.8621 | -0.0888 | 1.3591 | 0.3986 | 0.3603 | 0.3035 | 0.9192 | 2.3850 | ||
PR | 0.9872 | -0.1547 | 1.3165 | 0.3438 | 0.3594 | 0.2123 | 0.9584 | 2.3725 | ||
CVD | vdW | -0.2764 | -0.1711 | -0.4405 | -0.3684 | 0.3663 | 0.3177 | 2.9648 | 2.9725 | |
RK | -2.8909 | -2.8909 | -0.1320 | -0.1320 | -0.2929 | -0.2929 | 2.1863 | 2.2646 | ||
SRK | 0.2875 | 0.3152 | 0.8591 | 0.8564 | 0.3805 | 0.3737 | 2.3533 | 2.3741 | ||
PR | 0.3293 | 0.3422 | 0.8850 | 0.8874 | 0.3924 | 0.3877 | 2.3303 | 2.3547 |
表4 n-C5H12-CO2-C2H6三元体系优化后的二元交互作用参数kij
Table 4 AAD of EOSs with new binary interaction parameters kij of CO2-C2H6-n-C5H12 ternary system
温度、压力范围 | 混合规则 | EOS | | | | | | | | |
---|---|---|---|---|---|---|---|---|---|---|
优化后 | 优化前 | |||||||||
253~283 K, 0.6896~5.46 MPa | vdW | vdW | -0.6837 | 0.0875 | 0.9587 | -0.3942 | 0.3495 | 0.3443 | 1.8261 | 2.9008 |
RK | -0.6438 | 0.0921 | 0.9977 | 0.8328 | 0.2997 | 0.6939 | 1.8108 | 2.4772 | ||
SRK | -0.4869 | 0.2656 | 1.0962 | -0.4959 | 0.3834 | 3.4815 | 2.3790 | 2.5333 | ||
PR | -0.3722 | 0.1694 | 1.0288 | -0.4821 | 0.3716 | 3.3173 | 2.1855 | 2.5360 | ||
Margles | vdW | 1.7717 | -0.4295 | 1.0937 | 0.0148 | 0.4679 | -0.0955 | 1.6319 | 2.2090 | |
RK | 1.9416 | -0.5333 | 1.2083 | 0.3128 | 0.3289 | -0.0739 | 1.0382 | 2.2478 | ||
SRK | 0.8621 | -0.0888 | 1.3591 | 0.3986 | 0.3603 | 0.3035 | 0.9192 | 2.3850 | ||
PR | 0.9872 | -0.1547 | 1.3165 | 0.3438 | 0.3594 | 0.2123 | 0.9584 | 2.3725 | ||
CVD | vdW | -0.2764 | -0.1711 | -0.4405 | -0.3684 | 0.3663 | 0.3177 | 2.9648 | 2.9725 | |
RK | -2.8909 | -2.8909 | -0.1320 | -0.1320 | -0.2929 | -0.2929 | 2.1863 | 2.2646 | ||
SRK | 0.2875 | 0.3152 | 0.8591 | 0.8564 | 0.3805 | 0.3737 | 2.3533 | 2.3741 | ||
PR | 0.3293 | 0.3422 | 0.8850 | 0.8874 | 0.3924 | 0.3877 | 2.3303 | 2.3547 |
状态 方程 | 产品摩尔分数/% | 产品回收率/% | ||||
---|---|---|---|---|---|---|
CO2 | C2H6 | CO2 | C2H6 | |||
计算值 | 实验值[ | 相对误差 | ||||
vdW | 83.75 | 95.5 | 12.3 | 81.83 | 93.82 | 94.96 |
RK | 94.63 | 0.91 | 95.46 | 98.08 | 96.56 | |
SRK | 95.19 | 0.32 | 96.93 | 98.68 | 98.09 | |
PR | 95.01 | 0.51 | 96.56 | 98.53 | 97.53 |
表5 塔顶二氧化碳和乙烷产品的摩尔分数以及回收率
Table 5 Mole fraction and recovery rate of carbon dioxide and ethane on column top distillates
状态 方程 | 产品摩尔分数/% | 产品回收率/% | ||||
---|---|---|---|---|---|---|
CO2 | C2H6 | CO2 | C2H6 | |||
计算值 | 实验值[ | 相对误差 | ||||
vdW | 83.75 | 95.5 | 12.3 | 81.83 | 93.82 | 94.96 |
RK | 94.63 | 0.91 | 95.46 | 98.08 | 96.56 | |
SRK | 95.19 | 0.32 | 96.93 | 98.68 | 98.09 | |
PR | 95.01 | 0.51 | 96.56 | 98.53 | 97.53 |
1 | Azzolina N A , Peck W D , Hamling J A , et al . How green is my oil? A detailed look at greenhouse gas accounting for CO2-enhanced oil recovery (CO2-EOR) sites[J]. International Journal of Greenhouse Gas Control, 2016, 51(C): 369-379. |
2 | Davison J . Performance and costs of power plants with capture and storage of CO2 [J]. Energy, 2007, 32(7): 1163-1176. |
3 | Jensen M J , Russel C S , Bergeson D , et al . Prediction and validation of external cooling loop cryogenic carbon capture (CCC-ECL) for full-scale coal-fired power plant retrofit[J]. International Journal of Greenhouse Gas Control, 2015, 42: 200-212. |
4 | Fazlollahi F , Bown A , Ebrahimzadeh E , et al . Design and analysis of the natural gas liquefaction optimization process-energy storage of cryogenic carbon capture (CCC-ES)[J]. Energy, 2015, 90(6): 244-257. |
5 | Holmes A S , Ryan J M . Distillative separation of carbon dioxide from light hydrocarbons: US4350511[P]. 1982-09-28. |
6 | 姜斌, 吴菲, 隋红, 等 . 甲醇-丙酮共沸物分离的研究进展[J]. 化工进展, 2010, 29(3): 397-402. |
Jiang B , Wu F , Sui H , et al . Development in separation of acetone-methanol azeotrope[J]. Chemical Industry and Engineering Progress, 2010, 29(3): 397-402. | |
7 | Siirola J J . The impact of shale gas in the chemical industry[J]. AIChE Journal, 2014, 60(3): 810-819. |
8 | He C , You F . Shale gas processing integrated with ethylene production: novel process designs, exergy analysis, and techno-economic analysis[J]. Industrial & Engineering Chemistry Research, 2014, 53(28): 11442-11459. |
9 | Luyben W L . Control of an extractive distillation system for the separation of CO2 and ethane in enhanced oil recovery processes[J]. Industrial & Engineering Chemistry Research, 2013, 52(31): 10780-10787. |
10 | Luyben W L , Chien I L . Design and Control of Distillation Systems for Separating Azeotropes[M]. New Jersey: John Wiley & Sons Inc., 2011: 327-367. |
11 | Tavan Y , Hosseini S H . A novel application of reactive absorption to break the CO2-ethane azeotrope with low energy requirement[J]. Energy Conversion & Management, 2013, 75(11): 407-417. |
12 | Tavan Y , Tavan A . Performance of conventional gas sweetening process to remove CO2 in presence of azeotrope[J]. Journal of CO2 Utilization, 2014, 5(5): 24-32. |
13 | Tavan Y . A note on use of the CO2-ethane azeotrope as new feed of reforming process using mathematical modeling[J]. Journal of Natural Gas Science & Engineering, 2014, 21: 275-282. |
14 | Mannan M , Starling K E . Equation-of-state vapor-liquid equilibrium prediction methodology for systems containing undefined fractions[J]. Fuel, 1988, 67(6): 815-821. |
15 | Ravindranath D , Neely B J , Robinson R L , et al . QSPR generalization of activity coefficient models for predicting vapor-liquid equilibrium behavior[J]. Fluid Phase Equilibria, 2007, 257(1): 53-62. |
16 | Jia H , Wang H X , Ma K , et al . Effect of thermodynamic parameters on prediction of phase behavior and process design of extractive distillation[J]. Chinese Journal of Chemical Engineering, 2018, 26(5): 993-1002. |
17 | Sharma R , Singhal D , Ghosh R , et al . Potential applications of artificial neural networks to thermodynamics: vapor-liquid equilibrium predictions[J]. Computers & Chemical Engineering, 1999, 23(3): 385-390. |
18 | Perakis C , Voutsas E , Magoulas K , et al . Thermodynamic modeling of the vapor-liquid equilibrium of the water/ethanol/CO2 system[J]. Fluid Phase Equilibria, 2006, 243(1/2): 142-150. |
19 | Danesh A , Xu D H , Todd A C . Comparative study of cubic equations of state for predicting phase behavior and volumetric properties of injection gas-reservoir oil systems[J]. Fluid Phase Equilibria, 1991, 63(3): 259–278. |
20 | Yang J , Griffiths P R , Goodwin A R H . Comparison of methods for calculating thermodynamic properties of binary mixtures in the sub and super critical state: Lee-Kesler and Cubic equations of state for binary mixtures containing either CO2 and H2S[J]. Journal Chemical Thermodynamics, 2003, 35(9): 1521–1539. |
21 | Li H , Yan J . Evaluating cubic equations of state for calculation of vapor-liquid equilibrium of CO2 and CO2-mixture for CO2 capture and storage processes[J]. Applied Energy, 2009, 86(6): 826-836. |
22 | 张占柱, 郭丽萍, 杨晓东 . N2-C2H6-CO2 三元系统汽液平衡的实验测定[J]. 化工学报, 1999, 50(3): 392-398. |
Zhang Z Z , Guo L P , Yang X D . Experimental determination of vapor-liquid equilibrium in N2-C2H6-CO2 ternary system[J]. Journal of Chemical Industry and Engineering (China), 1999, 50(3): 392-398. | |
23 | Abedi N , Nastifar K . Group contribution method for predicting the phase behavior of binary mixtures containing carbon dioxide[J]. Iranian Journal of Chemical Engineering, 2012, 9(1): 12-22. |
24 | Rowlinson J S . Legacy of van der Waals[J]. Nature, 1973, 244(5416): 414-417. |
25 | Redlich O , Kwong J N S . On the thermodynamics of solutions (Ⅴ): An equation of state. Fugacities of gaseous solutions[J]. Chemical Reviews, 1949, 44(1): 233-44. |
26 | Soave G . Equilibrium constants for modified Redlich–Kwong equation of state[J]. Chemical Engineering Science, 1972, 27(6): 1197-1203. |
27 | Peng D Y , Robinson D B . A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59-64. |
28 | Yazdizadeh M , Eslamimanesh A , Eslamimanesh F . Applications of cubic equations of state for determination of the solubilities of industrial solid compounds in supercritical carbon dioxide: a comparative study[J]. Chemical Engineering Science, 2012, 71(1/2): 283-299. |
29 | Panagiotopoulos A Z , Reid R C . Equation of state theories and applications[J]. ACS Symposlum Series, 1986, 30(5): 571-580. |
30 | Mukhopadhyay M , Raghuram G V . Thermodynamic modeling for supercritical fluid process design[J]. Industrial and Engineering Chemistry Research, 1993, 32(5): 922-930. |
31 | Klimeck J , Kleinrahm R , Wagner W . Measurements of the (p, ρ, T) relation of methane and carbon dioxide in the temperature range 240 K to 520 K at pressures up to 30 MPa using a new accurate single-sinker densimeter[J]. Journal of Chemical Thermodynamics, 2001, 33(3): 251-267. |
32 | Nagahama K , Konishi H , Hoshino D , et al . Binary vapor-liquid equilibria of carbon dioxide-light hydrocarbons at low temperature[J]. Journal of Chemical Engineering of Japan, 1974, 7(5): 323-328. |
33 | Ohgaki K , Katayama T . Isothermal vapor-liquid equilibrium data for the ethane-carbon dioxide system at high pressures[J]. Fluid Phase Equilibria, 1977, 1(1): 27-32. |
34 | Soave G , Gamba S , Pellegrini L A . SRK equation of state: predicting binary interaction parameters of hydrocarbons and related compounds[J]. Fluid Phase Equilibria, 2010, 299(2): 285-293. |
35 | Pellegrini L A , Moioli S , Gamaba S , et al . Prediction of vapor-liquid equilibrium for reservoir mixtures with cubic equations of state: binary interaction parameters for acidic gases[J]. Fluid Phase Equilibria, 2011, 326(326): 45-49. |
36 | Valderrama J O , Rehman O U . Generalized interaction parameters in cubic equations of state for CO2-n-alkane mixtures[J]. Fluid Phase Equilibria, 1988, 40(3): 217-233. |
37 | Joffe J , Zudkevitch D . Prediction of liquid phase enthalpies with the Redlich-Kwong equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1970, 9(4): 545-548. |
38 | Hong J H , Kobayashi R . To break an azeotrope. The use of n-pentane to break the CO2-ethane azeotrope, for carbon dioxide EOR gas processing[J]. Industrial & Engineering Chemistry Process Design & Development, 1986, 25(3): 736-741. |
[1] | 汪尔奇, 彭书舟, 杨震, 段远源. 含HFO混合体系气液相平衡的理论模型评价[J]. 化工学报, 2023, 74(8): 3216-3225. |
[2] | 吴子睿, 孙瑞, 石凌峰, 田华, 王轩, 舒歌群. CO2混合工质的气液相平衡的混合规则对比与预测研究[J]. 化工学报, 2022, 73(4): 1483-1492. |
[3] | 赵延兴, 王宪, 姚晓宇, 董学强, 沈俊, 公茂琼. 流体汽液相平衡混合规则研究进展[J]. 化工学报, 2019, 70(6): 2036-2050. |
[4] | 李舒宏, 李献亮, 杨文超, 张永信, 张小松. 基于不同状态方程模型的N2/O2/CO2相平衡特性分析[J]. 化工学报, 2014, 65(z2): 25-32. |
[5] | 兰雪,夏力,项曙光. 超额吉布斯自由能-状态方程模型的研究进展[J]. 化工进展, 2014, 33(02): 304-308. |
[6] | 毛庭璧, 罗祎青, 袁希钢. 考虑非等温混合的能量集成水网络设计方法 [J]. 化工学报, 2010, 61(2): 369-377. |
[7] | 董立华, 郝栩, 曹立仁, 李永旺. 费托合成油品体系相关二元物系汽液平衡预测方法的评价 [J]. 化工学报, 2009, 60(6): 1367-1372. |
[8] | 张世喜, 陈光进, 杨兰英, 马昌峰, 郭天民. 含氢气体水合物生成条件的测定和计算 [J]. 化工学报, 2003, 54(1): 24-28. |
[9] | 杨涛,陈光进,阎炜,郭天民. 普遍化立方型状态方程中Wong-Sandler型混合规则的建立 [J]. CIESC Journal, 1997, 48(3): 382-388. |
[10] | 王利生,郭天民. 基于Patel-Teja状态方程的统一粘度模型(Ⅱ)应用于油气藏流体粘度的预测 [J]. CIESC Journal, 1993, 44(6): 685-691. |
[11] | 谷明星,里群,陈卫东,郭天民. 固体硫在超临界/近临界酸性流体中的溶解度(Ⅱ)热力学模型 [J]. CIESC Journal, 1993, 44(3): 321-327. |
[12] | 卞白桂,王延儒,时钧. 立方型状态方程含过量自由焓模型的新混合规则 [J]. CIESC Journal, 1993, 44(3): 309-314. |
[13] | 郭天民,杜连贵. 半理论LVIS粘度模型应用于油藏原油 [J]. CIESC Journal, 1993, 44(2): 236-239. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||