化工学报 ›› 2020, Vol. 71 ›› Issue (9): 4200-4210.DOI: 10.11949/0438-1157.20200510
收稿日期:
2020-05-08
修回日期:
2020-07-01
出版日期:
2020-09-05
发布日期:
2020-09-05
通讯作者:
王涛
作者简介:
王明兴(1987—),男,硕士研究生,基金资助:
Mingxing WANG(),Xin ZHAO,Tao WANG(),Jiaojiao LU,Zhiping ZHAO
Received:
2020-05-08
Revised:
2020-07-01
Online:
2020-09-05
Published:
2020-09-05
Contact:
Tao WANG
摘要:
采用低温水等离子体技术,在三通道聚氯乙烯(PVC)膜表面接枝了甲基丙烯氧基苄基二甲基氯化铵(DMAE)单体,增强了膜亲水和抗菌性能。通过红外分析,表明DMAE成功接枝到了PVC膜上,水通量提高两倍,PVC-ir-H2O膜(通过水等离子体处理的膜)对牛血清蛋白(BSA)的吸附能力下降67%,对BSA溶液的通量从7.7提高至40 kg?m-2?h-1,并且对BSA的截留能力不变。通过静态及动态抗菌实验,接枝后的PVC膜(PVC-g-PMAE膜)抗菌率达到100%,膜组件运行中的抗菌率也达到82%以上。在保证细菌截留率100%的同时,其渗透通量提高三倍。该膜表面修饰工程技术能实现膜表面的均一化改性,且绿色环保、操作简便、成本低,改性膜在饮用水处理领域,尤其是家用净水器中展现了很好的应用前景。
中图分类号:
王明兴, 赵欣, 王涛, 路姣姣, 赵之平. 低温水等离子体活化和表面接枝DMAE聚氯乙烯中空纤维膜研究[J]. 化工学报, 2020, 71(9): 4200-4210.
Mingxing WANG, Xin ZHAO, Tao WANG, Jiaojiao LU, Zhiping ZHAO. Study of PVC hollow fiber membrane grafted with DMAE by low-temperature H2O plasma surface modification[J]. CIESC Journal, 2020, 71(9): 4200-4210.
图1 等离子体装置示意图1—hollow fiber membrane module; 2—discharge coil; 3—pressure sensor; 4—radiofrequency matcher; 5—radiofrequency power source; 6—capacitance gauge; 7—vacuum pump
Fig.1 Scheme of plasma setup
图4 水等离子辐照时间对中空纤维膜接触角的影响等离子体条件: 压力(30±3) Pa, 功率40 W
Fig.4 The effects of H2O plasma irradiation time on water contact angle of PVC hollow fiber membrane
图6 不同组件内膜的接触角随距组件入口距离的变化
Fig.6 Dependence of the contact angle of outer surface of membrane on the distance from module inlet for different membrane modules
图12 PVC和PVC-ir-H2O膜组件对BSA溶液的截留率随时间的变化experimental conditions:(20±2)℃, 0.1 MPa
Fig.12 The rejections of original PVC membrane and PVC-ir-H2O modules for BSA solution
图13 PVC膜和PVC-ir-H2O膜的BSA通量随时间的变化JB1—the first time, JB2—the second time, JB3—the third time
Fig.13 BSA solution fluxes of original PVC membrane and PVC-ir-H2O modules
1 | Peters T. Membrane technology for water treatment[J]. Chem. Eng. Technol., 2010, 33: 1233-1240. |
2 | Tooma M A, Najim T S, Alsalhy Q F, et al. Modification of polyvinyl chloride (PVC) membrane for vacuum membrane distillation (VMD) application[J]. Desalination, 2015, 373: 58-70. |
3 | Yu Z J, Zhao Y Y, Gao B, et al. Performance of novel Ag-n-TiO2/PVC reinforced hollow fiber membrane applied in water purification: in-situ antibacterial property and resistance to biofouling[J]. RSC. Adv., 2015, 5: 97320-97329. |
4 | Mansouri J, Harrisson S, Chen V. Strategies for controlling biofouling in membrane filtration systems: challenges and opportunities[J]. J. Mater. Chem., 2010, 20: 4567-4586. |
5 | Wang B L, Wang J L, Li D D, et al. Chitosan/poly (vinyl pyrollidone) coatings improve the antibacterial properties of poly(ethylene terephthalate) [J]. Appl. Surf. Sci., 2012, 258: 7801-7808. |
6 | Waheed S, Ahmad A, Khan S M, et al. Synthesis, characterization, permeation and antibacterial properties of cellulose acetate/polyethylene glycol membranes modified with chitosan[J]. Desalination, 2014, 351: 59-69. |
7 | Zhu L X, Dai J Y, Chen L, et al. Design and fabrication of imidazolium ion-immobilized electrospun polyurethane membranes with antibacterial activity[J]. J. Mater. Sci., 2017, 52: 2473-2483. |
8 | Kaner P, Johnson D J, Seker E, et al. Layer-by-layer surface modification of polyethersulfone membranes using polyelectrolytes and AgCl/TiO2 xerogels[J]. J. Membr. Sci., 2015, 493: 807-819. |
9 | Luo C, Liu W J, Luo B H, et al. Antibacterial activity and cytocompatibility of chitooligosaccharide-modified polyurethane membrane via polydopamine adhesive layer[J]. Carbohyd. Polym., 2017, 156: 235-243. |
10 | Xu H, Shi X, Ma H, et al. The preparation and antibacterial effects of dopa-cotton/AgNPs[J]. Appl. Surf. Sci., 2011, 257: 6799-6803. |
11 | Dolina J, Dlask O, Lederer T, et al. Mitigation of membrane biofouling through surface modification with different forms of nanosilver[J]. Chem. Eng. J., 2015, 275: 125-133. |
12 | Park S H, Kim S H, Park S J, et al. Direct incorporation of silver nanoparticles onto thin-film composite membranes via arc plasma deposition for enhanced antibacterial and permeation performance[J]. J. Membr. Sci., 2016, 513: 226-235. |
13 | Mural P K S, Kumar B, Madras G, et al. Chitosan immobilized porous polyolefin as sustainable and efficient antibacterial membranes[J]. ACS Sustain. Chem. Eng., 2016, 4: 862-870. |
14 | Mauter M S, Wang Y, Okemgbo K C, et al. Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials[J]. ACS Appl. Mater. Inter., 2011, 3: 2861-2868. |
15 | Xu B S, Niu M, Wei L Q, et al. The structural analysis of biomacromolecule wool fiber with Ag-loading SiO2, nano-antibacterial agent by UV radiation[J]. J. Photoch. Photobio. A, 2007, 188: 98-105. |
16 | Lu Z S, Meng M, Jiang Y K, et al. UV-assisted in situ synthesis of silver nanoparticles on silk fibers for antibacterial applications[J]. Colloid Surf. A, 2014, 447: 1-7. |
17 | Zhao Z P, Li N, Li M S, et al. Controllable modification of polymer membranes by long-distance and dynamic low-temperature plasma flow: long-distance and dynamic characteristics[J]. Plasma Chem. Plasma P, 2012, 32: 1243-1258. |
18 | Zhao Z P, Li M S, Li N, et al. Controllable modification of polymer membranes by long-distance and dynamic low-temperature plasma flow: a grafting penetrated through electrospun PP fibrous membranes[J]. J. Membr. Sci., 2013, 440: 9-19. |
19 | Li M S, Zhao Z P, Wang M X, et al. Controllable modification of polymer membranes by LDDLT plasma flow: antibacterial layer onto PE hollow fiber membrane module[J]. Chem. Eng. J., 2015, 265: 16-26. |
20 | Yao C, Li X S, Neoh K G, et al. Antibacterial activities of surface modified electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) fibrous membranes[J]. Appl. Surf. Sci., 2009, 255: 3854-3858. |
21 | Mei Y, Yao C, Fan K, et al. Surface modification of polyacrylonitrile nanofibrous membranes with superior antibacterial and easy-cleaning properties through hydrophilic flexible spacers[J]. J. Membr. Sci., 2012, 417/418: 20-27. |
22 | Gao X L, Wang H Z, Wang J, et al. Surface-modified PSf UF membrane by UV-assisted graft polymerization of capsaicin derivative moiety for fouling and bacterial resistance[J]. J. Membr. Sci., 2013, 445: 146-155. |
23 | Zhao J, Song L J, Shi Q, et al. Antibacterial and hemocompatibility switchable polypropylene nonwoven fabric membrane surface[J]. ACS Appl. Mater. Inter., 2013, 5: 5260-5268. |
24 | Asri L A T W, Crismaru M, Roest S, et al. A shape-adaptive, antibacterial-coating of immobilized quaternary-ammonium compounds tethered on hyperbranched polyurea and its mechanism of action[J]. Adv. Funct. Mater., 2014, 24: 346-355. |
25 | Poverenov E, Shemesh M, Gulino A, et al. Durable contact active antimicrobial materials formed by a one-step covalent modification of polyvinyl alcohol, cellulose and glass surfaces[J]. Colloid. Surface. B., 2013, 112: 356-361. |
26 | Lu G Q, Wu D C, Fu R W. Studies on the synthesis and antibacterial activities of polymeric quaternary ammonium salts from dimethylaminoethyl methacrylate[J]. React. Funct. Polym., 2007, 67: 355-366. |
27 | Li M S, Zhao Z P, Li N, et al. Controllable modification of polymer membranes by long-distance and dynamic low-temperature plasma flow: treatment of PE hollow fiber membranes in a module scale[J]. J. Membr. Sci., 2013, 427: 431-442. |
28 | Zhu D, Cheng H H, Li J N, et al. Enhanced water-solubility and antibacterial activity of novel chitosan derivatives modified with quaternary phosphonium salt[J]. Mat. Sci. Eng. C-Mater., 2016, 61: 79-84. |
29 | Yanagisawa Y, Yoshioka Y. Remote surface modification of plastics by atmospheric barrier discharge[J]. Electr. Eng. Jpn., 2009, 167: 1-8. |
30 | Inagaki N, Tasaka S, Horiuchi T, et al. Surface modification of poly(aryl ether ether ketone) film by remote oxygen plasma[J]. J. Appl. Polym. Sci., 1998, 68: 271-279. |
31 | Yu H Y, Xie Y J, Hu M X, et al. Surface modification of polypropylene microporous membranes to improve their antifouling property in MBR: CO2 plasma treatment[J]. J. Membr. Sci., 2005, 254: 219-227. |
32 | Sui Y, Gao X L, Wang Z N, et al. Antifouling and antibacterial improvement of surface-functionalized poly(vinylidene fluoride) membrane prepared via dihydroxyphenylalanine-initiated atom transfer radical graft polymerizations[J]. J. Membr. Sci., 2012, 394/395: 107-119. |
33 | Chen X, Zhang G F, Zhang Q H, et al. Preparation and performance of amphiphilic polyurethane copolymers with capsaicin-mimic and PEG moieties for protein resistance and antibacteria[J]. Ind. Eng. Chem. Res., 2015, 54: 3813-3820. |
34 | Kaur S, Ma Z, Gopal R, et al. Plasma-induced graft copolymerization of poly(methacrylic acid) on electrospun poly(vinylidene fluoride) nanofiber membrane[J]. Langmuir, 2007, 23: 13085-13092. |
35 | Bayramoğlu G, Yalçin E, Arica M Y. Adsorption of serum albumin and γ-globulin from single and binary mixture and characterization of pHEMA-based affinity membrane surface by contact angle measurements[J]. Biochem. Eng. J., 2005, 26: 12-21. |
36 | Darvishmanesh S, Degrève J, Bruggen B V D. Mechanisms of solute rejection in solvent resistant nanofiltration: the effect of solvent on solute rejection[J]. Phys. Chem. Chem. Phys., 2010, 12: 13333-13342. |
37 | Yang Y F, Wan L S, Xu Z K. Surface hydrophilization of microporous polypropylene membrane by the interfacial crosslinking of polyethylenimine[J]. J. Membr. Sci., 2009, 337: 70-80. |
38 | Zhang Y T, Chen Y F, Zhang H Q, et al. Potent antibacterial activity of a novel silver nanoparticle-halloysite nanotube nanocomposite powder[J]. J. Inorg. Biochem., 2013, 118: 59-64. |
39 | Zodrow K, Brunet L, Mahendra S, et al. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal[J]. Water Res., 2009, 43: 715-723. |
[1] | 吴降麟, 张朝晖, 王亮, 赵斌, 李腾飞, 陈萌萌. 宽流道反渗透膜元件抗污染性能分析[J]. 化工学报, 2019, 70(4): 1446-1454. |
[2] | 赵媛媛, 何奎, 李斯陶, 张立志. 中空纤维膜除湿组件的热质传递特性[J]. 化工学报, 2017, 68(S1): 96-104. |
[3] | 熊长川, 李卫星, 刘业飞, 邢卫红. 柱式膜组件结构的CFD优化设计[J]. 化工学报, 2017, 68(11): 4341-4350. |
[4] | 张春尧, 耿洪鑫, 郎庆成, 李凭力, 武晓燕. 新型气隙式膜蒸馏组件脱盐过程[J]. 化工学报, 2015, 66(10): 4000-4006. |
[5] | 李卜义, 王建友, 王济虎, 刘红斌. 新型中空纤维空气隙式膜蒸馏用于海水淡化[J]. 化工学报, 2015, 66(1): 149-156. |
[6] | 钟文锋1,杨敏林2,左远志2,黄斯珉2. 膜式液体除湿器研究进展[J]. 化工进展, 2013, 32(05): 971-977. |
[7] | 吕斯濠1,秦 琦2,张杰琳3,范洪波1,梁志辉1. 旋转剪切强化膜过滤技术研究进展[J]. 化工进展, 2012, 31(11): 2373-2383. |
[8] | 华 伟1,李传润2,3,张 旭2,王虎传3,杨伟华2,徐铜文2,魏凤玉1. 卷式扩散渗析膜法回收H2SO4/FeSO4体系中的H2SO4[J]. 化工进展, 2012, 31(01 ): 222-226. |
[9] | 吕斯濠,张赵田,蔡勋江,范洪波. 振动剪切强化膜过滤技术研究进展 [J]. CIESC Journal, 2009, 28(7): 1115-. |
[10] | 李 昕,王洪海. 改善膜表面流动状态防治膜污染技术的研究进展 [J]. CIESC Journal, 2007, 26(6): 797-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||